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Abstract: The effects of crushed waste brick as the basal material (BM) and proportions of rice husk char-
coal (RHC) as a supplement material (SM) of potting mixes for pak choi (Brassica chinensis) production
were evaluated. The factors included (i) types of BM, i.e., sand and crushed brick, and (i) proportions
of RHC supplementation at the proportion of BM:SM of 1:0, 1:0.5, and 1:1 v/v. Generally, crushed brick
decreased pak choi’s shoot biomass compared to sand. Supplementing the potting mix with RHC at
BM:SM ratio of 1:0.5 v/v rendered an increase in yield compared to 1:0 v/v. Nevertheless, increasing RHC

to 1:1 v/v brought about decreases in shoot biomass compared to its lower RHC proportion (1:0.5 v/v).
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Introduction

Environmental degradation nowadays is
contributed mainly to the fast economic growth
in both manufacturing and agrarian sectors.
Re-utilization of industrial wastes and agricultural
residues is perceived as strategic ecological
safety (Zaman, 2017). From a manufacturing
standpoint, broken brick is commonly the
construction waste in Thailand (Sujjavanich
et al., 2014). This brick is originally fabricated
from clayey soil combined with sand and a
small amount of rice husk ash and heated under
extreme temperatures of approximately 1200°C
for 2-3 weeks (Chuchaisong and Wongthong,
2009). The brick contains a certain amount
of plant nutrients, e.g., K, Ca, Mg, and Fe
(Lourengo et al., 2010; Sujjavanich et al., 2014;
Lawanwadeekul et al., 2020). Crushing and
then employing the waste brick as a potting mix
component may be the case for its recycling in
crop production. From an agricultural standpoint,
rice husk is easily accessible due to its huge
availability in many Asian countries, including
Thailand (Thambhitaks and Kitchaicharoen,
2021). Pyrolysis of rice husk to charcoal and its
use as a potting mix promises to condition the
growing media and promote crop growth (Farhan
etal., 2018). Rice husk charcoal (RHC) has been
reported to improve soil fertility and enhance plant
growth and yield (Haefele et al., 2011; Wang et
al., 2012). These benefits are due to the fact that
RHC poses improving plant nutrient availability
(Abrishamkesh et al., 2015), increasing and
diversifying soil microbes (Singh et al., 2018), and
neutralizing the pH (Abrishamkesh et al., 2015)
of the growing media. Nevertheless, the optimum
ratio of the mixture of the brick and RHC as a
potting mix has not been observed.

Pak choi (Brassica chinensis) is a

leafy vegetable flavor as a main or side dish

worldwide. Proper soil pH for its growth ranges from
6.0 - 6.8 (Ebesu, 2004). Adequate tissue N, P, K,
Caand Mg concentrations are 34, 4.9,67.9, 19.8,
and 4.0 g kg™, respectively (Huett et al., 1997).
Commercially, the production of greenhouse
vegetables requires a large amount of growing
media. Compensation of the expensive
commercial media with the low price
counterparts, viz waste brick, could cut the
production costs. Therefore, the current study
aimed at evaluating the effects of the potting mix
ratios between crushed brick and RHC on the

growth and yield of a vegetable crop.

Materials and Methods

A pot experiment was conducted
under a greenhouse condition. The experiment
was arranged in a 2x3 factorial in randomized
complete block design replicated eight times.
Two factors of the potting mix were evaluated,
i.e., (i) basal materials including crushed brick
in comparison with sand, and (i) proportions
of RHC which was the supplementary material.
Mixture ratios of basal to supplementary materials
were 1:0, 1:0.5, and 1:1 v/v. Pak choi was used
as a test crop.

Waste brick and sand were received
from a construction material supplier, while RHC
was a commercially available material obtained
from an agricultural product store in Sakon
Nakhon province. The brick was broken and
crushed. Crushed brick, sand, and RHC were
sieved to pass to through a 2-mm sieve for further
use in the experiment.

Pots (h = 14.0 cm, top d = 20.4 cm,
bottom d = 12.8 cm, v = 3,083 cm’) were filled
with the potting mixes in the ratios corresponding
to their respective treatments. Each pot was lined
with a serving tray. Pak choi was seeded and
nursed in a nursery tray for 14 days. A 14-day
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old seedling chosen for its homogeneity and
health was transplanted to a pot. Recommended
chemical fertilizers were applied to all pots at the
same rates of 110 mg N kg™, 85 mg PO, kg,
and 60 mg KZO kg" (Yu et al., 2016). A pot was
watered to maintain soil moisture at field capacity
through the experimental period.

Height and leaf number of pak choi were
determined at 20, 27, 34, 41, and 48 days after
germination (DAG). At 48 DAG, leaf area was
measured using the ImagedJ technique (Image
Processing and Analysis in Java, National
Institutes of Health, Maryland, USA)
and leaf area index was calculated from
leaf area divided by pot area. At the
harvest (48 DAG), the aboveground pak choi
was cut and weighed to achieve fresh shoot
biomass. The aboveground was subsequently
oven-dried at 65°C to gain the constant weight
for dry shoot biomass determination.

A two-way analysis of variance based on

randomized complete block design in a factorial

arrangement was used to evaluate the effects
of types of basal material, RHC proportions and
their interactions on growth and yield parameters
of pak choi. Mean comparisons were assessed
using Tukey's honestly significant difference
test. The statistically significant differences were
appraised at p £ 0.05. The statistical analyses
were operated by the SAS version 9.1 (SAS
Institute, Cary, NC, USA).

Results

The interaction effects of basal materials
(sand and crushed brick) and RHC proportions
on height (p £ 0.001) and fresh shoot biomass
(p £ 0.05) of pak choi were observed (Table 1).
Similarly, the effects of basal material types on
height (p < 0.01) and fresh shoot biomass (p <
0.001) were found. Meanwhile, the effects of RHC
proportions were shown in height (o £ 0.001),
leaf number (p < 0.001), leaf area (p < 0.05),
leaf area index (p £ 0.05), fresh shoot biomass
(p £ 0.001) and dry shoot biomass (p £ 0.001).

Table 1 Two-way analysis of variance pertaining to the effects of types of basal material, RHC proportions, and their

interactions on growth and yield parameters of pak choi.

p-value t
s fvar Degree of
ources or variance Leafarea  Fresh shoot  Dry shoot
freedom Height Leaf area , ; ,y

number index biomass biomass

Basal material (BM) 1 * ns ns ns ok ns

RHC rate 2 *kk *kk * * *kk *kk

BM x RHC rate 2 el ns ns ns * ns

*p< 0.05; *p< 0.01; ***p< 0.001; and ns = not significantly different (F-test)
T p-values of periodic measurement of growth parameters, i.e., height and leaf number, at the harvest date (48 days

after pak choi germination)



42

AMNENANFASINHATLAZNNTAANNS 4 (3) : 39-47 (2564)

At the harvest (48 DAG), the height of
pak choi was generally lower in crushed brick
treatments (Figure 1B) than in sand treatments
(Figure 1A). For both sand and crushed brick,
increasing a proportion of RHC from 1:0 to 1:0.5
v/v increased plant height.

Leaf number was not affected by the
potting mixes at 48 DAG (Figure 1C and 1D).

Leaf area (Figure 1E) and leaf area index (Figure
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1F) were not different between sand and crushed
brick treatments. Raising an RHC proportion from
1:0 to 1:0.5 v/v rendered greater leaf area and
leaf area index in both sand and crushed brick.
However, increasing RHC to 1:1 v/v in crushed
brick led to lower leaf area and leaf index as

compared to its lower RHC proportion.
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Figure 1 Height (A and B), leaf number (C and D), leaf area (E) and leaf area index (F) of pak choi as responded to

basal materials (BM) of the potting mixes including sand and crushed brick supplemented with rice husk charcoal (RHC)
of different ratios (BM:RHC, 1:0, 1:0.5, and 1:1 v/v). Bars with the same letters of either sub-figure (E) and (F) are not
significantly different (o < 0.05; Tukey’s HSD test). Error bars of sub-figure (E) and (D) represent standard deviation.
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The 1:0.5 and 1:1 v/v of crushed
brick treatments produced lower fresh shoot
biomass than the sand treatments of respective
RHC proportions (Figure 2A). Dry shoot
biomass tended to decrease in crushed brick
supplemented with RHC at a ratio of 1:0 and

1:1 v/v compared to sand supplemented with

the respective RHC proportions (Figure 2B).
Fresh- (Figure 2A) and dry shoot biomass
(Figure 2B) increased in the 1:0.5 v/v in
comparison to 1:0 v/v. On the contrary, the
biomass tended to decrease in the 1:1 v/v
compared to its lower RHC proportion (1:0.5 v/v)

in crushed brick treatment.
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Figure 2 Fresh- (A) and dry shoot biomass (B) of pak choi as affected by basal materials (BM) of the potting mixes

including sand and crushed brick supplemented with rice husk charcoal (RHC) of different ratios (BM:RHC, 1:0, 1:0.5

and 1:1 v/v). Bars with the same letters of either sub-figure (A) and (B) are not significantly different (p < 0.05; Tukey’s

HSD). Error bars represent standard deviation.

Discussion

The deleterious effect of crushed brick
used as a basal material of the potting mix
may primarily result from excessive Si supply.
Butnan (2015) demonstrated that high Si content
in growing media due to overdose application
of eucalyptus charcoal led to the antagonistic
effect of Si to Fe and Mn. Based on shoot Si
content, plants have been classified as high-,
intermediate-, and non-Si accumulators (Tubana
et al., 2016; Li and Delvaux, 2019). Plants
contained 1-10% Si (in dry weight) ranked as high
Siaccumulator, and 0.5-1% Si was intermediate,
while less than 0.5% Si was non-Si accumulator
(Ma et al., 2001). Brassica sp. was counted

as a non-Si accumulator because its shoot Si

concentration was less than 0.1% (Guntzer et
al., 2012). However, it has been claimed that
Brassica sp. could uptake and store high Si
content in roots via an active transport process
(Tubana et al., 2016; Haddad et al., 2018). High
Si supply in growing media therefore rendered
Si antagonistic to other cations, in particular
Fe and Mn. The following are the mechanisms
of the antagonistic effect of Si on other cations
including Fe and Mn proposed by Liang et
al. (2007): (i) increase in ionic strength, (ii)
stimulation of unavailability of other cations
via metal-phenolic complex through induction
of phenolic compound releases and (iii)
co-precipitation of Si with metals in growing

media.
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Silicon in crushed brick was achieved
from the thermal transformation of soil minerals,
i.e., kaolinite and quartz, as well as rice husk
ash employed as raw materials in the brick
production (Chuchaisong and Wongthong, 2009;
Trakoolngam et al., 2019). In addition, the low
specific surface area and low negative surface
charge causing the low cation holding capacity
of crushed brick were possibly an additive effect
of Si oversupply.

Raw materials of the fired clay brick in
Northeast Thailand are commonly comprised
of clayey soil, sand, and rice husk ash
(Chuchaisong and Wongthong, 2009;
Trakoolngam et al., 2019). Kaolinite was a
principal mineral constituted in clayey soils
employed in the manufacturing brick process
(Promkotra, 2013). After the moulding step, the
fresh brick was heated under a peak temperature
of approximately 1,200°C (Chuchaisong and
Wongthong, 2009). Under the heating process,
kaolinite was transformed to metakaolinite, and
finally mullite and cristobalite, respectively (Lee
etal., 1999). Kaolinite structure was delaminated,
dehydroxylated, and re-crystallized to produce
not only high content of plant-available Si (Daou
et al., 2020) but also other new mineral products,
e.g., metakaolinte, Y-alumina, Al-Si spinel,
Al-rich mullite, cristobalite, and amorphous SiO2
(Lee et al., 1999). These minerals possessed
the low specific surface areas and low negative
surface charges (Torres Sanchez and Tavani,
1994). Torres Sanchez and Tavani (1994)
reported that the major minerals in the
kaolinite heating process included 41.2%Si02,
22.5%AI203, and 19.2%Fe203 w/w. They also
found abrupt decreases in specific surface
areas of the whole sample of these minerals,
i.e., 55,46, and 2m’ g’ with increasing heating
temperatures of 100, 500, and 1,100°C,

respectively. Meanwhile, the low surface charge
of heated kaolinite-derived minerals was a
consequence of the removal of the -OH group
in the dehydroxylation reaction (Chakraborty,
2014)

At around 1,000 — 2,000°C, Ol-quartz
(common quartz) was thermally transformed
to B-quartz, high-temperature hexagonal
tridymite, B—cristobalite, coesite, stishovite, and
ready plant-available Si (Ringdalen, 2015). An
additional Si was gained from rice husk ash- a
brick raw material, which ranged 40.2 — 43.5%
Si w/w (Hossain et al., 2018).

The adverse effect of high RHC
proportion (1:1 v/v) on fresh- and dry shoot
biomass may also be attributed to the
oversupply of Si. Rice husk charcoal has been
chosen as an alternative Si source because it
is reputed as high content of plant-available Si
(Wang et al., 2019) as can be demonstrated
in Costa et al. (2003), who found 32%Si w/w
constituted in RHC. It has been reported that
Si-instituted minerals in RHC were phytolith
[SiOn/z(OH)M]m, hydrated amorphous Si
(SiOz-nHzO), and crystalline Si such as
gonnardite (NaZCaAIASiGOQO-7(HZO), cristobalite
[(SiOz)n], tridymite [(SiOZ)n], diopside
(MgCaSiQO6), kalsilite (KAISiO4), albite
[Na(AISiaos)], and quartz [(SiOZ)n] (Xiao et al.,
2014; Qian et al., 2016; Li and Delvaux, 2019).
As such, phytolith and amorphous Si were
pointed out as the primary Si minerals in
rice residue-derived charcoal produced at
about 500°C which was a similar level of
heating temperature for charcoal production
in the current work (Li and Delvaux, 2019).
Phytolith and amorphous Siin RHC were soluble
and easily uptaken by plant (Li et al., 2019).
Overdose application of RHC therefore brought

about an additive effect on Si antagonism.
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Conclusions

The results of this study were
constructively demonstrated that recycling
waste brick as a basal material of potting mix
for pak choi production brought about the del-
eterious effect on pak choi’s growth and vyield.
Supplementation of potting media with rice husk
charcoal at the proportion between the basal
and supplement materials to 1:0.5 could improve
growth and yield of pak choi and vice versa for
1:1 v/v. Instead of re-utilization of waste brick
as a basal material of the potting mix in crop
production, its fabrication to pellets, granules,
or ball material as a soil conditioner should be

taken into account.
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