

**ขวดลีโอนาร์ดส่งเสริมการเจริญเติบโตของข้าวฟ่าง การครอบครองรากและการสร้าง
สปอร์ของราอาร์บสคูลาร์ไมโคอร์ไรชา**

**Leonard Jar Assembly Enhanced Sorghum Growth, Root Colonization and Sporulation of
Arbuscular Mycorrhizal Fungi**

สิรินภา ช่วงโภกาส¹ ธงชัย มาลา¹ และเกวLIN ศรีจันทร์^{1*}

Sirinapa Chungopast¹, Thongchai Mala¹ and Kavalin Srichan^{1*}

Received: February 2, 2024

Revised: March 26, 2024

Accepted: April 9, 2024

Abstract: The effect of different watering methods was studied for host-plant cropping systems on the arbuscular mycorrhizal fungi (AMF) abundance from pot inoculum production in a greenhouse using sorghum as the host plant. A factorial experiment in a completely randomized design was used with 2 factors and 3 replications: first factor was mycorrhizal fungus 4 strains: *Rhizoglomus aggregatum*, *Claroideoglomus etunicatum*, *Funneliformis geosporum* and *Rhizoglomus irregularis* and second factor was watering method: showering, dripping and Leonard jar assembly (LJA). Sorghum growth, mycorrhizal root colonization and spore were analysis. The LJA watering method exhibited that the maximum height and dry matter were considerably greater for sorghum. The mycorrhizal root colonization intensity and mycorrhizal spores in the LJA treatment were also significantly higher. *R. aggregatum* and *F. geosporum* had the highest root colonization with sorghum (64.24 and 61.71%, respectively). *R. aggregatum* had the highest levels of spore production (33.13 spores/g) with the LJA treatment. *C. etunicatum* and *R. irregularis* had lower root colonization (20.51 and 30.46%, respectively). The mycorrhizal spore numbers of *R. aggregatum* and *F. geosporum* using the LJA treatment were higher than those of *C. etunicatum* and *R. irregularis*. Consequently, plant watering regime of the LJA that provided constant moisture and nutrients along with the AMF species affected the root colonization and spore of the inoculum.

Keywords: mycorrhizal fungi, Leonard jar, plant watering regimes

บทคัดย่อ: ศึกษาวิธีการให้น้ำแบบต่างๆ สำหรับระบบการปลูกพืชอาศัยที่มีผลต่อความอุดมสมบูรณ์ของเชื้อราอาร์บสคูลาร์ไมโคอร์ไรชา (AMF) จากการผลิตหัวเชื้อกรงทางภายในโรงเรือน โดยใช้ข้าวฟ่างเป็นพืชอาศัย วางแผนการทดลองแบบสุ่มสมบูรณ์ (CRD) จัดสิ่งทดลองแบบแฟคทอร์เรียล จำนวน 2 ปัจจัย 3 ชั้้า โดย ปัจจัยที่ 1 คือ ชนิดของเชื้อราไมโคอร์ไรชา 4 สายพันธุ์ ได้แก่ *Rhizoglomus aggregatum*, *Claroideoglomus etunicatum*, *Funneliformis geosporum* และ *Rhizoglomus irregularis* ปัจจัยที่ 2 คือ วิธีการให้น้ำ 3 กรรมวิธี ได้แก่ การรดน้ำ การใช้น้ำหยด และการใช้ขวดลีโอนาร์ด วิเคราะห์การเจริญเติบโตของข้าวฟ่าง การครอบครองราก และสปอร์ไมโคอร์ไรชา ผลของการใช้ขวดลีโอนาร์ด แสดงให้เห็นว่าความสูงข้าวฟ่างมีความสูงเฉลี่ยสูงสุดและ

¹ ภาควิชาปฐพีวิทยา คณะเกษตร กำแพงแสน มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน จ.นครปฐม 73140

¹ Department of Soil Science, Faculty of Agriculture, Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140

*Corresponding author: kskavalins@gmail.com

มีน้ำหนักแห้งสูงสุดสูง การครอบครองรากและจำนวนสปอร์ของราบสคูลาร์ไมโครริเวชาที่มีการใช้ขาดลีโอนาร์ดมีค่าสูงขึ้นอย่างมีนัยสำคัญเช่นกัน *R. aggregatum* และ *F. geosporum* มีการครอบครองรากข้าวฟ่างสูงที่สุด (64.24 และ 61.71 เปอร์เซ็นต์ ตามลำดับ) *R. aggregatum* มีระดับการผลิตสปอร์สูงสุด (33.13 สปอร์ต่อกรัม) การใช้ขาดลีโอนาร์ดมีผลทำให้ร้า *C. etunicatum* และ *R. irregularis* มีการครอบครองรากต่ำกว่า (20.51 และ 30.46 เปอร์เซ็นต์ ตามลำดับ) และเมื่อใช้ขาดลีโอนาร์ดทำให้จำนวนสปอร์ของไมโครริเวชา *R. aggregatum* และ *F. geosporum* มีมากกว่าของ *C. etunicatum* และ *R. irregularis* ดังนั้น ระบบการให้น้ำโดยใช้ขาดลีโอนาร์ดให้ความชื้นและสารอาหารคงที่ร่วมกับสายพันธุ์ AMF จึงส่งผลต่อการครอบครองรากและสปอร์ของหัวเชือก

คำสำคัญ: เชือราไมโครริเวชา, ขาดลีโอนาร์ด, ระบบการให้น้ำฟีช

คำนำ

การผลิตหัวเชือราอาร์บัสคูลาร์ไมโครริเวชา มีความสำคัญในการปลูกพืชเกษตรเชิงพานิชย์ ทั่วโลก กลุ่มเชือราอาร์บัสคูลาร์ไมโครริเวชา (AMF) ได้แก่ *Acaulospora*, *Entrophospora*, *Gigaspora*, *Glomus*, *Pacispora* และ *Sclerocystis* มีปฏิสัมพันธ์ร่วมกับพืชหลายชนิด (Liu et al., 2021) AMF ผลิตสีน้ำเงินทึบออกอกรากดูดซึมฟอสฟे�ต และสารอาหารอื่นๆ แก่พืชอาศัย กิจกรรมของฟอสฟะเตสหรือการหลังกรดอินทรีย์ของ AMF ก่อให้เกิดฟอสเฟตกรูปที่เป็นประโยชน์สำหรับพืช (Duponnois et al., 2005) การใช้ AMF ช่วยขยายระบบรากและปรับปรุงการออกซิเจนเมล็ด การเจริญเติบโตของพืช และการดูดซึมน้ำและแร่ธาตุโดยพืช โดยเฉพาะอย่างยิ่งสำหรับการดูดซึมฟอสฟอรัส (Smith and Read, 2010) นอกจากนี้ AMF ยังสามารถปรับปรุงความสามารถในการปรับตัวของพืชให้เข้ากับสภาพแวดล้อมที่เปลี่ยนแปลงและสภาวะเครียดหลายประการ เช่น ความเค็ม ความร้อน การปนเปื้อนโลหะหนัก ความแห้งแล้ง และอุณหภูมิที่รุนแรง (Begum et al., 2019) ยังมีรายงานผลเชิงบวกสำหรับ *Acaulospora mellea* ZZ ต่อการเจริญเติบโตของข้าวฟ่างหวาน 2 พันธุ์ (Liaotian 5 และ Yajin 2) ในดินเค็ม (Wang et al., 2019) AMF มีประสิทธิภาพสำหรับดินที่มีความชุกน้ำและน้ำที่ต่ำ ดังนั้น AMF มีบทบาทสำคัญในระบบฟาร์มเกษตรที่ยั่งยืน (Mahmood and Rizvi, 2010) อย่างไรก็ตาม การใช้ AMF ในปริมาณมากต้องการหัวเชือก AMF

คุณภาพสูง ส่งผลให้งานวิจัยในปัจจุบันมีความสนใจอย่างมากในการผลิตหัวเชือกโดยการเพิ่มปริมาณสปอร์ที่สามารถนำไปใช้กับพืชผลทางการเกษตรได้ ซึ่งการผลิตในปริมาณมากต้องอาศัยพืชอาศัยที่เหมาะสม เช่น หญ้าสูงดาน หญ้าบานเยีย หญ้าเซนเซอร์ส โคลเวอร์ สตอร์เบอร์รี่ ข้าวฟ่าง ข้าวโพด หัวหอม และโคลอส (Mukerji, 1996) การใช้สตอร์เบอร์รี่ ได้แก่ ทรายและเรือร่มคุ้ลิต์เพิ่มการครอบครองรากในการผลิตสปอร์ (Silva et al., 2005) ความชื้นในดินส่งผลต่อการครอบครองรากและปริมาณสปอร์ของ AMF (Shukla et al., 2010) ซึ่งการสังเกตโครงสร้างรากที่มีราไมโครริเวชาเข้าอาศัยเป็นการประเมินการครอบครองของรา (Feldmann and Idczak, 1992) เป็นไปได้ว่าระบบการให้น้ำแก่พืชจะส่งผลต่อสัณฐานวิทยาและการเจริญเติบโตของพืช โดยทั่วไปน้ำมีความเกี่ยวข้องกับปฏิกิริยาทางชีวเคมีของการเผาผลาญภายในสิ่งมีชีวิตซึ่งเป็นส่วนประกอบของเซลล์ ช่วยในการละลายสารอาหาร และปรับอุณหภูมิและความสมดุลของความเป็นกรด-ด่างในเซลล์ (Doussan et al., 1998) AMF สามารถเพิ่มการสังเคราะห์แสง และช่วยให้พอดีกับปีกในมีความเชื่อมโยงกับการคายน้ำและสมดุลน้ำของพืช (Augé, 2001) น้ำ สารอาหาร และอุณหภูมิที่เป็นประโยชน์ในดินเป็นปัจจัยด้านสิ่งแวดล้อมบางประการที่มีอิทธิพลต่อการพัฒนาของราบบิเวณไร้โซลฟีเยอร์ที่มีเชือรา AMF มีอิทธิพลต่อระบบบินิเวศในด้านการเจริญเติบโตและสุขภาพของพืช มีการทำงานร่วมกันระหว่าง AMF และพืชอาศัย โดย AMF จะให้น้ำและ

สารอาหาร และพืชให้พลังงานสำหรับการเจริญเติบโตของ AMF (Finlay, 2008) การวิจัยนี้มีจุดมุ่งหมายเพื่อศึกษาผลของการให้น้ำแบบต่างๆ (การลดน้ำ การใช้น้ำหยด และการใช้ขวดลีโอนาร์ด) ต่อการเจริญเติบโตของเชื้อไมโครรากชานิดต่างๆ และข้าวฟ่าง เนื่องจากยังไม่มีการรายงานการเปรียบเทียบวิธีการให้น้ำทั้งสามวิธีนี้สำหรับการขยายพันธุ์ AMF และคุณภาพของหัวเชื้อ ตรวจสอบโดยพิจารณาจากการครอบครองรากและปริมาณสปอร์ใน AMF 4 สายพันธุ์ ซึ่งปลูกในข้าวฟ่างโดยการเพาะเลี้ยงในกระถาง

อุปกรณ์และวิธีการ สายพันธุ์เชื้อรากรับสกุลาร์ไมโครรากชานิดต่างๆ การเพาะเลี้ยง

การทดลองของออกแบบเป็นแพคทอเรียล 4×3 แบบสุ่มอย่างสมบูรณ์ มี 2 ปัจจัย 3 ชั้้า โดยปัจจัยที่ 1 คือ เชื้อรากไมโครรากชานิดต่างๆ มี 4 สายพันธุ์ ได้แก่ *Rhizoglomus aggregatum*, *Claroideoglobus etunicatum*, *Funneliformis geosporum* และ *Rhizoglomus irregularis* จากห้องปฏิบัติการจุลชีววิทยาของ din ภาควิชาปัชชีวิทยา คณะเกษตร กำแพงแสน มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน และปัจจัยที่ 2 คือ วิธีการให้น้ำ 3 แบบ

ได้แก่ 1) การลดน้ำ โดยลดน้ำลงด้านบนและปล่อยให้น้ำส่วนเกินระบายนอกไป (Hillock and Needham, 2006) 2) การใช้น้ำหยด เป็นการปล่อยหยดน้ำในอัตราช้าๆ และค่อยๆ ซึ่มลงสู่ด้านล่าง และ 3) การใช้ขวดลีโอนาร์ด เป็นการดูดน้ำจากด้านล่างขึ้นด้านบนผ่านเชือกในขวด (Leonard, 1943) จากนั้นเตรียมเมล็ดข้าวฟ่างที่ใช้ในการทดลอง โดยจะนำเชือกบนพื้นผิวเมล็ดข้าวฟ่างด้วยสารละลายไฮโดรเจนเปอร์ออกไซด์ 5 เปอร์เซ็นต์ เป็นเวลา 5 นาที จากนั้นล้างด้วยน้ำกันล้นเพื่อเตรียมการเพาะเลี้ยง ใช้ทรายเป็นวัสดุปลูกในการเพาะเลี้ยงในสภาพกระถาง ล้างทรายให้สะอาดแล้วนำไปอบฟรีในเตาอบที่อุณหภูมิ 200 องศาเซลเซียส เป็นเวลา 2 ชั่วโมง จากนั้น ใส่ทรายประมาณ 2 กิโลกรัม ลงในกระถาง 6 นิ้ว และทำหลุมหนึ่งหลุมบนพื้นผิวทราย (ลึกประมาณ 5 เซนติเมตร) สำหรับการเพาะเชื้อ AMF (100 สปอร์ต่อหลุม) และเพาะเมล็ดข้าวฟ่าง 3 เมล็ดต่อกระถาง รดน้ำด้วยสารละลายธาตุอาหาร (Asher, 1975) เมื่อเมล็ดออกตึงระยะใบเลี้ยงสองใบแล้ว ถอนแยกเหลือ 1 ต้น และให้น้ำที่แตกต่างกันสามแบบตามการทดลองจนกระทั่งเก็บเกี่ยว (Figure 1) และแสดงแบบจำลองระบบบรดุน้ำ 3 แบบ ของข้าวฟ่างที่มีเชื้อไมโครรากชานิดต่างๆ

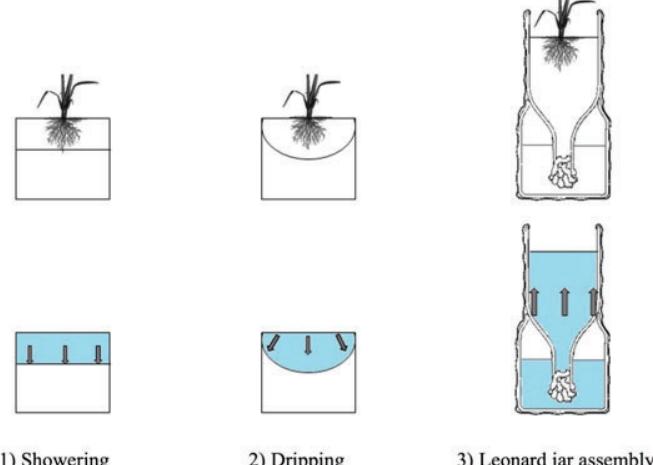


Figure 1 Three watering system models for AMF colonization in sorghum root where arrows indicate direction of water and nutrient movement (Leonard jar assembly image modified from Mullette, 1976)

การวิเคราะห์การเจริญเติบโตของข้าวฟ่างเมื่อใส่ราอาร์บสกูลาร์ไมโครริชรา

การติดตามการเจริญเติบโตของข้าวฟ่างที่ 13 สัปดาห์หลังปลูกเชือ (week post inoculation, wpi) โดยพิจารณาจากความสูงของต้นและน้ำหนักแห้งของรากและยอด ความสูงวัดจากส่วนฐานของรากถึงโคน เป็นที่สูงที่สุด น้ำหนักแห้งของข้าวฟ่างคำนวณหลังจากการออบแห้งในเตาอบที่อุณหภูมิ 70 องศาเซลเซียส เป็นเวลา 2 วัน

การตรวจสอบการครอบครองรากของราอาร์บสกูลาร์ไมโครริชรา

ใส่ตัวอย่างรากข้าวฟ่างที่ 13 wpi ในสารละลายโพแทสเซียมไอก្រอกไซด์ 10 เปอร์เซ็นต์ ที่ให้

$$\text{เปอร์เซ็นต์การครอบครองรากของ AMF} = \frac{(\text{จำนวน segments ที่มีการครอบครองราก}) \times 100}{\text{จำนวน segments ที่ตรวจสอบ}}$$

การตรวจสอบจำนวนสปอร์ของราอาร์บสกูลาร์ไมโครริชรา

สปอร์ของไมโครริชราบันจากทรายที่มีหัวเชือ AMF ขยายตัวในรากข้าวฟ่างที่ 13 wpi และสปอร์โดยใช้วิธีร่อนผ่านตะแกรงแบบเปียก (wet sieving) (Gerdemann and Nicolson, 1963) โดยสูมทรายในแต่ละกระถาง จำนวน 5 กรัม จากนั้นเติมน้ำกลันที่ผ่านการฆ่าเชื้อแล้ว 200 มิลลิลิตร ใส่ในขวดพลาสติกสะอาดแล้วเขย่าเป็นเวลา 30 นาที หลังจากการเขย่าเสร็จสิ้น เทสารละลายที่ได้ผ่านชั้นตะแกรงเปียกที่มีช่องขนาด 425, 250 และ 45 ไมโครเมตร และใช้น้ำฉีดเพื่อล้างตัวอย่างสปอร์ประมาณ 15 มิลลิลิตร เทสปอร์บนตะแกรงแต่ละอันลงในหลอดปั่นให้ยิ่งแยกกัน จากนั้นใช้ชิริ่งใส่สารละลายซูโครัส 50 เปอร์เซ็นต์ จำนวน 20 มิลลิลิตร ที่ก้นหลอดอย่างช้าๆ เพื่อไม่ให้สารละลายผสมกันนำไปปั่นแยกสปอร์ที่ 2,000 รอบต่อนาที เป็นเวลา 3-4 นาที จะทำให้เกิดตะกอนของสปอร์ตกรวยต่อของสารละลาย ใช้ปีเปตดูดสารละลายตกรวยต่อนั้น ใส่ตะแกรงขนาด 45 ไมโครเมตร และใช้น้ำฉีดล้างน้ำตะลอกออกให้หมด จากนั้นกรองสปอร์ผ่านกระดาษกรอง Whatman No. 1 และนำไปศึกษาภายใต้กล้องจุลทรรศน์ นับจำนวนสปอร์ต่อกรัมของทรายแห้ง

ความร้อน ตามด้วยการล้างน้ำจนกระทั่งไม่มีทรายหรืออินทรีย์ตkulioอยู่บนพื้นผิวของ จากนั้น ฟอกข้าวagainด้วยอัลคาไลน์ไอก្រอกเรนเปอร์ออกไซด์ที่ผสมใหม่ ล้างน้ำให้สะอาดและย้อมสีรากโดยการแช่ไว้เป็นเวลา 4 นาที ในไอก្រอกคลอลิก 1 เปอร์เซ็นต์ และทริปแพนบลู 0.05 เปอร์เซ็นต์ ในแลคโตฟีโนล (Phillips and Hayman, 1970) ตัดรากข้าวฟ่างที่ย้อมสีเป็นท่อนขนาด 1 เซนติเมตร เพื่อประเมินการครอบครองราก โดยคำนวณจำนวน 50 segments ต่อหงื่งตัวอย่าง เปอร์เซ็นต์ของการครอบครองรากของไมโครริชราประเมินภายใต้กล้องจุลทรรศน์และคำนวณตามสมการ

$$\text{เปอร์เซ็นต์การครอบครองราก} = \frac{(\text{จำนวน segments ที่มีการครอบครองราก}) \times 100}{\text{จำนวน segments ที่ตรวจสอบ}}$$

การวิเคราะห์ข้อมูลทางสถิติ

ข้อมูลปริมาณของสปอร์ การครอบครองรากและการเจริญเติบโตของข้าวฟ่าง วิเคราะห์ความแปรปรวน (ANOVA) ด้วยโปรแกรม R V.4.1.2 (R Core Team, 2018) และเปรียบเทียบความแตกต่างระหว่างค่าเฉลี่ยของแต่ละสายพันธุ์ของรา AMF และเปรียบเทียบความแตกต่างของวิธีการให้น้ำโดยวิธีการ Duncan's new multiple range test ที่ระดับความเชื่อมั่น 99 เปอร์เซ็นต์

ผลการทดลอง

การเจริญเติบโตของข้าวฟ่าง

การเจริญเติบโตของข้าวฟ่างวัดจากความสูงและน้ำหนักแห้ง สายพันธุ์ของ AMF และวิธีการรดน้ำส่งผลให้เกิดความแตกต่างอย่างมีนัยสำคัญในความสูงเฉลี่ยของข้าวฟ่างที่ 13 wpi (Table 1) โดยการใช้ขวดลีโอนาร์ด ทำให้ข้าวฟ่างมีความสูงเฉลี่ยมากที่สุด (152.10 เซนติเมตร) เมื่อเทียบกับวิธีอื่นการรดน้ำและการใช้น้ำหยดทำให้ข้าวฟ่างมีความสูงเฉลี่ย 104.10 และ 101.40 เซนติเมตรตามลำดับความสูงของข้าวฟ่างเฉลี่ยสูงสุดคือ 155 เซนติเมตร สำหรับข้าวฟ่างที่ได้รับเชื้อ *F. geosporum* โดยใช้วิธีการใช้ขวดลีโอนาร์ด ที่ 13 wpi ระบบรดน้ำส่งผลให้น้ำหนักแห้งของข้าวฟ่างแตกต่างกันอย่างมีนัยสำคัญ (Table 2)

การใช้ข้าวคลีโอนาร์ดมีน้ำหนักแห้งข้าวฟ่างเฉลี่ย (47.47 กรัม) มากกว่าวิธีรดน้ำและให้น้ำหยด ปฏิสัมพันธ์ระหว่างพันธุ์ AMF และระบบการให้น้ำ มีความแตกต่างอย่างมีนัยสำคัญต่อน้ำหนักแห้ง

ข้าวฟ่าง น้ำหนักแห้งข้าวฟ่างเฉลี่ยสูงสุดคือ 49.70 กรัม ในข้าวฟ่างที่ได้รับเชื้อ *R. aggregatum* โดยวิธี การใช้ข้าวคลีโอนาร์ด

Table 1 Plant height of Sorghum inoculated with 4 species of arbuscular mycorrhizal fungi (AMF) and different watering methods (showering, dripping and Leonard Jar Assembly) at 13 weeks post inoculation.

Mycorrhizal species	Sorghum height (cm)			Average	
	Watering method				
	Showering	Dripping	LJA		
<i>Rhizoglomus aggregatum</i>	108.60 ^e	104.40 ^g	154.40 ^b	122.50 ^A	
<i>Claroideoglomus etunicatum</i>	108.40 ^f	100.00 ^j	147.00 ^d	118.50 ^C	
<i>Funneliformis geosporum</i>	101.80 ⁱ	102.20 ^h	155.00 ^a	119.70 ^B	
<i>Rhizoglomus irregularis</i>	97.60 ^l	98.80 ^k	151.80 ^c	116.10 ^D	
Average	104.10 ^B	101.40 ^c	152.10 ^A		
F-test					
AMF		**			
Watering		**			
AMF × Watering		**			

Means in a column followed by the same letter do not significantly different by Duncan's new multiple range test.

** Significant at $P < 0.01$

Table 2 Dry weight of sorghum inoculated with 4 species of arbuscular mycorrhizal fungi (AMF) and different watering methods (showering, dripping and Leonard Jar Assembly) at 13 weeks post inoculation.

Mycorrhizal species	Sorghum dry weight (g)			Average	
	Watering method				
	Showering	Dripping	LJA		
<i>Rhizoglomus aggregatum</i>	32.29 ^j	33.47 ^h	49.70 ^a	38.49 ^A	
<i>Claroideoglomus etunicatum</i>	30.29 ^l	34.81 ^e	46.68 ^c	37.26 ^D	
<i>Funneliformis geosporum</i>	32.82 ⁱ	34.62 ^f	47.25 ^b	38.23 ^B	
<i>Rhizoglomus irregularis</i>	32.14 ^k	33.50 ^g	46.25 ^d	37.30 ^C	
Average	31.88 ^C	34.10 ^B	47.47 ^A		
F-test					
AMF		**			
Watering		**			
AMF × Watering		**			

Means in a column followed by the same letter do not significantly different by Duncan's new multiple range test.

** Significant at $P < 0.01$

การครอบครองรากของราอาร์บัสคูลาร์ไมโครรีเชา

สายพันธุ์ AMF ระบบการให้น้ำ และปฏิสัมพันธ์ของปัจจัยทั้งสอง ทำให้เกิดการครอบครองรากของราอาร์บัสคูลาร์ไมโครรีเชาในระดับที่แตกต่าง กันมากอย่างมีนัยสำคัญยิ่งทางสถิติ (Table 3) การครอบครองรากข้าวฟ่างที่ 13 wpi มีค่าเฉลี่ยสูงสุดคือ *F. geosporum* เท่ากับ 48.82 เปอร์เซ็นต์ วิธีการใช้

ขวดลีโอนาร์ด มีการครอบครองรากเฉลี่ยสูงสุด 44.23 เปอร์เซ็นต์ เมื่อเทียบกับวิธีการให้น้ำแบบอื่น การเพาะเลี้ยงพืชอาศัยตามวิธีรดน้ำและการใช้น้ำหยด มีระดับการครอบครองรากเฉลี่ย 26.83 และ 34.19 เปอร์เซ็นต์ ตามลำดับ โดยปฏิสัมพันธ์ระหว่าง AMF กับระบบการให้น้ำพบว่า *R. aggregatum* มีการครอบครองรากเฉลี่ยสูงที่สุด เท่ากับ 64.24 เปอร์เซ็นต์โดยการใช้ขวดลีโอนาร์ด ซึ่งแตกต่างอย่างมีนัยสำคัญยิ่งทางสถิติ

Table 3 AMF colonization percentage of sorghum roots inoculated with 4 species of arbuscular mycorrhizal fungi (AMF) and different watering methods (showering, dripping and Leonard Jar Assembly) at 13 weeks post inoculation.

Mycorrhizal species	Root colonization intensity (%)			Average	
	Watering method				
	Showering	Dripping	LJA		
<i>Rhizoglomus aggregatum</i>	32.06 ^f	32.72 ^e	64.24 ^a	43.01 ^B	
<i>Claroideoglomus etunicatum</i>	17.22 ^l	25.65 ⁱ	20.51 ^k	21.13 ^D	
<i>Funneliformis geosporum</i>	35.82 ^d	48.92 ^c	61.71 ^b	48.82 ^A	
<i>Rhizoglomus irregularis</i>	22.21 ^j	29.46 ^h	30.46 ^g	27.38 ^C	
Average	26.83 ^c	34.19 ^B	44.23 ^A		
F-test					
AMF			**		
Watering			**		
AMF × Watering			**		

Means in a column followed by the same letter do not significantly different by Duncan's new multiple range test.

** Significant at $P < 0.01$

ปริมาณสปอร์ราอาร์บัสคูลาร์ไมโครรีเชา

สายพันธุ์ของ AMF ส่งผลให้จำนวนสปอร์เฉลี่ยแตกต่างกันอย่างมีนัยสำคัญยิ่งทางสถิติในรากข้าวฟ่างที่ 13 wpi (Table 4) โดย *F. geosporum* มีจำนวนสปอร์เฉลี่ยสูงสุด เท่ากับ 19.60 สปอร์ต่อกรัม ตามด้วย *R. aggregatum* (19.13 สปอร์ต่อกรัม) *R. irregularis* (9.03 สปอร์ต่อกรัม) และ สปอร์ของ *C. etunicatum* (2.84 สปอร์ต่อกรัม) สำหรับวิธีการให้น้ำ พบร่วมกับวิธีการใช้ขวดลีโอนาร์ดทำให้จำนวน

สปอร์เฉลี่ยสูงสุด (21.57 สปอร์ต่อกรัม) ซึ่งแตกต่างทางสถิติกับวิธีอื่นอย่างมีนัยสำคัญยิ่งทางสถิติ โดยมีจำนวนสปอร์เฉลี่ยสูงกว่าการให้น้ำแบบหยด (11.73 สปอร์ต่อกรัม) และการรดน้ำ (4.65 สปอร์ต่อกรัม) ปฏิสัมพันธ์ของสายพันธุ์ AMF และระบบการให้น้ำ มีอิทธิพลอย่างมากต่อระดับการสร้างสปอร์ อย่างมีนัยสำคัญยิ่งทางสถิติ การผลิตหัวเชื้อโดยใช้วิธีการใช้ขวดลีโอนาร์ดร่วมกับ *R. aggregatum* ทำให้เกิดสปอร์เฉลี่ยสูงสุด 33.13 สปอร์ต่อกรัม

Table 4 Number of mycorrhizal spores at root zone of Sorghum inoculated with 4 species of arbuscular mycorrhizal fungi (AMF) and different watering methods (showering, dripping and Leonard Jar Assembly) at 13 weeks post inoculation.

Mycorrhizal species	Number of spores (spores g ⁻¹)			Average	
	Watering method				
	Showering	Dripping	LJA		
<i>Rhizoglomus aggregatum</i>	6.19 ^h	18.06 ^d	33.13 ^a	19.13 ^B	
<i>Claroideoglomus etunicatum</i>	2.03 ^j	3.36 ⁱ	3.14 ^j	2.84 ^D	
<i>Funneliformis geosporum</i>	8.04 ^f	18.26 ^c	32.50 ^b	19.60 ^A	
<i>Rhizoglomus irregularis</i>	2.33 ^k	7.24 ^g	17.51 ^e	9.03 ^C	
Average	4.65 ^c	11.73 ^B	21.57 ^A		
F-test					
AMF			**		
Watering			**		
AMF × Watering			**		

Means in a column followed by the same letter do not significantly different by Duncan's new multiple range test.

** Significant at P < 0.01

วิจารณ์

ราคาร์บัสคูลาร์ไมโครริโอชา (AMF) เป็นวิธีที่อาศัยร่วมกันกับพืชและมีการใช้กันอย่างแพร่หลาย เป็นปัจจัยสภาพเพื่อการเกษตร เพื่อให้ได้ AMF คุณภาพสูง และวิธีการผลิตสปอร์ที่ดี ว่าต้องการพืชอาศัยเพื่อเป็นที่อยู่ แหล่งสารอาหาร และน้ำ การขยายพันธุ์ AMF โดยใช้ข้าวฟ่างเป็นพืชอาศัย ซึ่งสามารถทำให้เกิดการครอบครองรากของ AMF ได้สูง สร้างการเชื่อมโยงระหว่างพืชและนำไปสู่การปรับปรุงคุณภาพและ การคุ้มครองสารอาหารของพืช มีใช้กันอย่างแพร่หลาย ในการเพาะเลี้ยงไมโครริโอชา (Kumar and Fulekar, 2019; Watts-Williams et al., 2022) เมื่อวิเคราะห์ การเจริญเติบโต การครอบครองราก และจำนวนสปอร์ที่ 13 wpi พบร่วมกับงานวิจัยนี้ วิธีการใช้ข้าวดีโนราดเป็นวิธีที่ดีที่สุดในการส่งเสริมให้ข้าวฟ่างมีความสูงและน้ำหนักแห้งที่ดี โดยอาศัยหลักการให้น้ำและสารอาหารเคลื่อนที่จากด้านล่างขึ้นสู่ด้านบน ผ่านไส้ตัวเกียงที่เชื่อมต่อไปยังกระถางด้านบน ข้อดีของระบบการให้น้ำด้วยข้าวดีโนราด คือประหยัด มีการระเหยต่ำ ไม่มีน้ำไหลบ่า ระดับความชื้นของวัสดุ

ปลูกคงที่ในภาคใต้ และตอบสนองความต้องการน้ำของพืชได้ดี (Semananda et al., 2018) พืชตอบสนองต่อความชื้นในระดับต่างๆ (Shukla et al., 2013) ดังนั้นความแตกต่างของระบบการให้น้ำจะทำให้พืชได้รับแร่ธาตุหรือสารอาหารแตกต่างกัน โดย AMF จะช่วยพัฒนาระบบการดูดซึมน้ำ และสารอาหารของพืชอาศัยให้มีประสิทธิภาพมากขึ้น AMF ยังมีผลต่อความสมดุลของน้ำภายในพืชอาศัย ส่งเสริมการเปิด-ปิดป่ากในสภาพดินแห้ง (Auge, 2004) และช่วยเพิ่มความยาวของลำต้น ราก น้ำหนักและพื้นที่ใบ Guo et al. (2013) รายงานว่าการใช้ AMF (*Glomus versiforme*) ช่วยเพิ่มความยาวของลำต้น ราก น้ำหนักและพื้นที่ใบ น้ำหนักแห้งของยอดและรากของข้าวโพดและข้าวฟ่างเพิ่มขึ้น 211-387 และ 70 เปอร์เซ็นต์ ตามลำดับ Jin et al. (2013) รายงานว่า AMF เกิดผลเชิงบวกต่อพืชหลายชนิด เช่น ส่งผลให้ตัวมีการเติบโตสูงและชีวมวลเพิ่มขึ้น ในงานวิจัยนี้ การครอบครองรากและจำนวนสปอร์ของ *R. aggregatum* และ *F. geosporum* ตอบสนองเป็นอย่างดีต่อการให้น้ำด้วยการใช้ข้าวดีโนราด ซึ่งสอดคล้องกับเทคนิค

การเพาะเลี้ยง AMF ด้วยจานเพาะเชือกที่ปีดผนึกเพื่อรักษาความชื้นและเพร่งร้าวจายในที่มีดินที่อุดมภูมิคุณที่ซึ่งเป็นประโยชน์ต่อผลผลิตและการสืบพันธุ์ของเชื้อรา AMF (Kokkoris and Hart, 2019) ปัจจัยที่ไม่มีสิ่งใด ความเป็นกรด-ด่าง (pH) ความชื้น และอุดมภูมิ ส่งผลต่อการเจริญเติบโตและการตอบสนองของ AMF (Meyer *et al.*, 2017) จากงานวิจัยนี้ ความชื้นจากการให้น้ำแบบต่างๆ ด้วยสารละลายธาตุอาหาร ช่วยเพิ่มการเจริญเติบโตของข้าวฟ่าง ซึ่งความชื้นมีผลต่อการครอบครองรากและการสร้างสปอร์ AMF ถ้าปริมาณน้ำที่เป็นประโยชน์ลดลงจะส่งผลให้ลดการสร้างสปอร์ อย่างไรก็ตาม การสร้างสปอร์ขึ้นอยู่กับไมโครรากษาแต่ละสายพันธุ์ด้วย (Deepika and Kothamasi, 2015; Silva *et al.*, 2015) Akhtar and Siddiqui (2010) รายงานว่า ในถั่วชิกพี สายพันธุ์ของ AMF มีผลต่อการครอบครองราก โดย *R. irregularis* มีการครอบครองรากในเปอร์เซ็นต์ที่สูงที่สุด ตามด้วย *R. aggregatum* และ Martin *et al.* (2012) พบร่วมในรากพืช *Plantago lanceolata* รา *F. geosporum* มีการครอบครองราก 16.2 เปอร์เซ็นต์ ในขณะที่งานวิจัยนี้สร้างระดับการครอบครองรากที่สูงขึ้นในรากข้าวฟ่าง โดยระบบการให้น้ำและสายพันธุ์ของรากไมโครรากเป็นปัจจัยหลักที่ทำให้เกิดการอกและสร้างสปอร์ของ AMF และคงความสมพันธ์เชิงบวกกับการเจริญเติบโตของพืช

สรุป

ราкар์บัสคุลาร์ไมโครรากษา *Rhizoglomus aggregatum* ตอบสนองเชิงบวกต่อวิธีให้น้ำด้วยการให้ข้าวคลีโอนาร์ดเมื่อใช้ข้าวฟ่างเป็นพืชอาศัย โดยวิธีนี้ข้าวฟ่างจะได้รับน้ำและสารอาหารอย่างต่อเนื่องจากสารละลายธาตุอาหาร ทำให้มีการเจริญเติบโตที่ดี ส่งผลให้น้ำหนักแห้งของข้าวฟ่าง การครอบครองรากและปริมาณสปอร์รวมมีค่าสูง ดังนั้นการให้น้ำด้วยวิธีการใช้ข้าวคลีโอนาร์ดสามารถเป็นทางเลือกในการสร้างสปอร์เพื่อการขยายพันธุ์ที่ดีของหัวเชื้อราкар์บัสคุลาร์ไมโครรากษา

กิตติกรรมประกาศ

ขอขอบคุณ ภาควิชาปัชุพิทยา คณะเกษตรฯ กำแพงแสน มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน ที่สนับสนุนสถานที่และอุปกรณ์เครื่องมือในการทำวิจัย

เอกสารอ้างอิง

- Akhtar, M.S. and Z.A. Siddiqui. 2010. Effects of AM fungi on the plant growth and root-rot disease of chickpea. American-Eurasian Journal of Agricultural & Environmental Sciences 8: 544-549.
- Asher, C. 1975. Plant Nutrition I Practical Notes. Department of Agriculture and Fisheries Qld. Australia, 35 p.
- Augé, R.M. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.
- Augé, R.M. 2004. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science 84(4): 373-381.
- Begum, N., C. Qin, M.A. Ahanger, S. Raza, M.I. Khan, M. Ashraf, N. Ahmed and L. Zhang. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10: 1068.
- Deepika, S. and D. Kothamasi. 2015. Soil moisture—a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25: 67-75.
- Doussan, C., L. Pagès and G. Vercambre. 1998. Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption—model description. Annals of Botany 81: 213-223.

- Duponnois, R., A. Colombet, V. Hien and J. Thioulouse. 2005. The mycorrhizal fungus *Glomus intraradices* and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of *Acacia holosericea*. *Soil Biology Biochemistry* 37: 1460-1468.
- Feldmann, F. and E. Idczak. 1992. Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries, pp. 799-833 In: J. Norris, D. Read, A. Varma (Eds). *Techniques for Mycorrhizal Research Methods in Microbiology*. Academic Press, London.
- Finlay, R.D. 2008. Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. *Journal of Experimental Botany* 59: 1115-1126.
- Gerdemann, J. and T.H. Nicolson. 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. *Transactions of the British Mycological Society* 46: 235-244.
- Guo, W., R. Zhao, W. Zhao, R. Fu, J. Guo, N. Bi and J. Zhang. 2013. Effects of arbuscular mycorrhizal fungi on maize (*Zea mays* L) and sorghum (*S. bicolor* L Moench) grown in rare earth elements of mine tailings. *Applied Soil Ecology* 72: 85-92.
- Hillock, D. and D. Needham. 2006. Houseplant Care. <http://osufacts.okstate.edu> (retrieved: September 1, 2023)
- Jin, H., J.J. Germida and F.L. Walley. 2013. Impact of arbuscular mycorrhizal fungal inoculants on subsequent arbuscular mycorrhizal fungi colonization in pot-cultured field pea (*Pisum sativum* L.). *Mycorrhiza* 23: 45-59.
- Kokkoris, V. and M. Hart. 2019. *In vitro* propagation of arbuscular mycorrhizal fungi may drive fungal evolution. *Frontiers in Microbiology* 10: 2420.
- Kumar, P. and M.H. Fulekar. 2019. Mycorrhizal soil development using *Sorghum bicolor* for rhizospheric bioremediation of heavy metals. *Bioscience Biotechnology Research Communications* 12: 688-697.
- Leonard, L.T. 1943. A simple assembly for use in the testing of cultures of rhizobia. *Journal of Bacteriology* 45: 523-527.
- Liu, R.C., Z.Y. Xiao, A. Hashem, E.F. Abd-Allah, Y.J. Xu and Q.S. Wu. 2021. Unraveling the interaction between arbuscular mycorrhizal fungi and *Camellia* plants. *Horticulturae* 7: 322.
- Mahmood, I. and R. Rizvi. 2010. Mycorrhiza and organic farming. *Asian Journal of Plant Science* 9: 241.
- Martin, S.L., S.J. Mooney, M.J. Dickinson and H.M. West. 2012. The effects of simultaneous root colonisation by three *Glomus* species on soil pore characteristics. *Soil Biology Biochemistry* 49: 167-173.
- Meyer, M., S. Bourras, J. Gervais, K. Labadie, C. Cruaud, M.H. Balesdent, and T. Rouxel. 2017. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions. *Fungal Genetics and Biology* 99: 1-12.
- Mukerji, K.G. 1996. *Concepts in mycorrhizal research*. Springer Science and Business Media, London, 39 p.

- Mullette, K. J. 1976. Mallee and tree forms within *Eucalyptus* species. Doctoral dissertation, University of New South Wales Sydney.
- Phillips, J.M. and D. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. *Transactions of the British Mycological Society* 55: 158–IN118.
- R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
- Semananda, N.P., J.D. Ward and B.R. Myers. 2018. A semi-systematic review of capillary irrigation: The benefits, limitations and opportunities. *Horticulturae* 4: 23.
- Shukla, A., A. Kumar, A. Jha and V. Tripathi. 2010. Effect of soil moisture on growth and arbuscular mycorrhizal colonization of crops and tree seedlings in alfisol. *Indian Phytopathology* 63: 411.
- Shukla, A., A. Kumar, A. Jha, O. Salunkhe and D. Vyas. 2013. Soil moisture levels affect mycorrhization during early stages of development of agroforestry plants. *Biology and Fertility of Soils* 49: 545-554.
- Silva, E.M., L.C. Maia, K.M.S. Menezes, M.B. Braga, N.D. Melo and A.M. Yano-Melo. 2015. Water availability and formation of propagules of arbuscular mycorrhizal fungi associated with sorghum. *Applied Soil Ecology* 94: 15-20.
- Silva, F.S.B., A.M. Yano-Melo, J.A.C. Brandão and L.C. Maia. 2005. Sporulation of arbuscular mycorrhizal fungi using Tris-CHI buffer in addition to nutrient solutions. *Brazilian Journal of Microbiology*. 36: 327-332.
- Smith, S.E. and D.J. Read. 2010. Mycorrhizal Symbiosis. Academic press, New York, 787 p.
- Wang, F., Y. Sun and Z. Shi. 2019. Arbuscular mycorrhiza enhances biomass production and salt tolerance of sweet sorghum. *Microorganisms* 7: 289.
- Watts-Williams, S.J., A.R. Gill, N. Jewell, C.J. Brien, B. Berger, B.T. Tran, E. Mace, A.W. Cruickshank, D.R. Jordan, T. Garnett and T.R. Cavagnaro. 2022. Enhancement of sorghum grain yield and nutrition: A role for arbuscular mycorrhizal fungi regardless of soil phosphorus availability. *Plants, People, Planet* 4(2):143-156.