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Abstract 

Galerkin and collocation approximation techniques are very effective and popular among researchers for 

numerical approximations of different types of differential, integral and integro-differential equations. Both 

methods approximate the solution by a finite sum of some known polynomials. In recent years, researchers around 

the world have been used different combinations of polynomials and collocation points in Galerkin and collocation 

methods for numerical approximations of different types of integral equations. Also, collocation method have 

been used more frequently compared to the Galerkin method. In this research, five different polynomials in 

Galerkin method and five different combinations of polynomials and collocation points in collocation method 

have been used for numerical approximations of linear FVIE of 2nd kind.It is found that the performances of 

different polynomials and collocation points in both these methods are consistent. 
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1. Introduction 

There are mainly two classes of integral 

equations: Fredholm integral equation and Volterra 

integral equation. Both of these have linear and 

nonlinear forms. In this study, linear Fredholm-

Volterra integral equations of 2nd kind are 

considered. Moreover, a similar study on Fredholm 

integral equation of 2nd kind is carried out by Molla 

and Saha, 2018.   

There are several analytic methods and many 

approximation techniques available to solve 

different variations of integral equations. Among 

various approximation techniques, Galerkin and 

collocation methods are most popular and efficient, 

and they are also used to solve different versions of 

differential and integro-differential equations. In 

both Galerkin and collocation methods, unknown 

function is approximated by a finite sum of a set of 

known functions called as basis functions and such 

choice can be made from a wide variety of 

polynomials. Also, both of these methods follow 

different approaches to determine the expansion 

coefficients.  

Fredholm-Volterra integral equations can be 

reduced to a system of algebraic equations by both 

Galerkin and collocation techniques. Yousuf and 

Razzaghi, 2005 used Legendre wavelets as the basis 

function in spectral method and then used zeroes of 

Chebyshev polynomials of first kind as the 

collocation points to solve nonlinear Fredholm-

Volterra integral equations. Then Mandal and 

Bhattacharya, 2007 used Galerkin technique with 

Bernstein polynomials as basis functions for 

numerical approximate solutions of some classes of 

integral equations. Recently Hesameddini and 

Shahbazi, 2017 used Bernstein polynomials in 

spectral collocation method with Gauss-Legendre 

nodes as collocation points to solve system of 

Fredholm-Volterra integral equations. Shifted 

Chebyshev polynomials of 1st kind and roots of 

shifted Chebyshev polynomials of 1st kind are 

considered as basis and collocation points 

respectively by Dastjerdi and Ghaini, 2012 to solve 

linear FVIE. But at first, they transformed the FVIE 

by moving least square method and then applied 

spectral approximations. Wang and Wang, (2013, 

2014) first transformed system of Fredholm-

Volterra integral equations into matrix equations by 

collocation scheme where they used Lagrange’s 

basis polynomials as the basis functions in the 

approximate solution. Later, they used Taylor 

polynomials as the basis in spectral method and
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equally spaced nodes as collocation points and 

hence transformed the FVIE to matrix equation. 

Ebrahimi and Rashidinia, 2015 introduced a method 

for linear and nonlinear Fredholm and Volterra 

integral equations where approximate solution is 

collocated by cubic B-spline. Nemati, 2015 

presented spectral method based on shifted 

Legendre polynomials and shifted Gauss Legendre 

nodes as collocation points for numerical 

approximation of the solution of Fredholm-Volterra 

integral equation. Also, Fibonacci polynomials and 

equally spaced nodes are used by Mirzaee and 

Hoseini, 2016 in spectral collocation method. More 

recently Liu et el., 2018 proposed a new spectral 

collocation technique where they used modified 

weighted Lagrange function known as barycentric 

Lagrange interpolation function along with Gauss-

Lobatto nodes to solve linear high-dimensional 

Fredholm integral equations. 

As far as our knowledge is concern, Galerkin 

method is used less frequently for Fredholm-

Volterra integral equations and Bernstein 

polynomials are only used as basis functions. Then 

in collocation method, roots of Jacobi polynomials 

have not been considered yet for FVIE of 2nd kind. 

In this study, Galerkin and collocation methods 

are considered for approximations of numerical 

solutions of linear Fredholm-Volterra integral 

equation of type II. Galerkin method is applied with 

five different polynomials: Legendre, Chebyshev 1st 

kind, Bernstein, Lagrange’s and Fibonacci 

polynomials to observe their performance in 

numerical approximations of linear FVIE of type II. 

Numerical examples are used and results from each 

polynomial are compared with the available exact 

solution. Then collocation method is also applied 

with five different combinations of basis functions 

and collocation points and details are presented in 

Table 1. And hence the approximations are again 

compared with exact solution in each case. In each 

case collocation points are shifted in the required 

interval according to the numerical example.  

Remaining portions of this article is presented 

as follows: In Section 1.1, brief introduction of 

polynomials and sets of collocation points are given. 

Then, details of formulation of system of linear 

algebraic equations from linear FVIE of 2nd kind 

using both Galerkin and collocation methods are 

given in Section 1.2. After that, numerical results of 

both the methods using different polynomials and 

collocation points are compared and resultant 

absolute errors are illustrated graphically in Section 

1.3. Finally, in Section 1.4, a conclusion about this 

research is drawn. 

Table 1. Combinations of polynomials and 

collocation points 
Set of basis function Collocation points 

Chebyshev polynomials of 1st 

kind 

Roots of Chebyshev 

polynomials of 1st 

kind 

Legendre polynomials Roots of Legendre 

polynomials 

Bernstein polynomials Roots of Jacobi 

polynomials 

Lagrange’s basis polynomials Equally spaced nodes 

Fibonacci polynomials Gauss-Lobatto nodes 

1.1 Introduction of polynomials and 

collocation points 

In this section a very short introduction of 

Legendre, Chebyshev, Bernstein, Lagrange’ s, 

Fibonacci and Jacobi polynomials are given.  All 

these polynomials are being used frequently in 

approximations of the solution of various kinds of 

differential and integral equations.  Techniques to 

generate collocation points for arbitrary interval 

[𝑎, 𝑏] from the roots of Legendre, Chebyshev and 

Jacobi polynomials; from the Gauss-Lobatto nodes 

and equally spaced nodes are presented. 

Legendre polynomials: Legendre polynomials 

𝑃𝑖(𝑤) are set of orthogonal polynomials over 

[−1, 1] and are solutions of the Legendre differential 

equation.  

We know that explicit formula for 𝑃𝑖(𝑤) is 

𝑃𝑖(𝑤) = ∑ (
𝑖
𝑘

) (
−𝑖 − 1

𝑘
)

𝑖

𝑘=0

(
1 − 𝑤

2
)

𝑘

, 𝑖 = 0,1,2 … 

And, the recurrence relation for Legendre 

polynomials are as follows: 

𝑃0(𝑤) = 1, 𝑃1(𝑤) = 𝑤 

(𝑖 + 1)𝑃𝑖+1(𝑤) = (2𝑖 + 1)𝑤𝑃𝑖(𝑤) − 𝑖𝑃𝑖−1(𝑤),

𝑖 = 1,2, … 

The roots of the Legendre polynomials are in the 

interval (−1, 1). In order to generate set of 

collocation points 

𝐿𝐶𝑃 = [𝑥𝑘]𝑘=0
𝑘=𝑛 

over the interval [𝑎, 𝑏],  the following points along 

with 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏 are considered. 

𝑥𝑘 =
𝑏 − 𝑎

2
+

𝑏 − 𝑎

2
𝑤𝑘   ; 𝑘 = 1,2, . . , 𝑛 − 1 

where 𝑤𝑘 is a root of the Legendre 

polynomials 𝑃𝑛−1(𝑤) with 𝑤𝑘 < 𝑤𝑘+1 for 𝑘 =

1, 2, … , 𝑛 − 2.
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Chebyshev polynomials: Chebyshev 

polynomials of first kind 𝑇𝑖(𝑦) are set of orthogonal 

polynomials over [−1,1] and are solutions of the 

Chebyshev differential equation. We know that 

explicit formula for 𝑇𝑖(𝑦) is 

𝑇𝑖(𝑦) = 𝑦𝑖 ∑ (
𝑖

2𝑘
)

⌊
𝑖

2
⌋

𝑘=0

(1 − 𝑦−2)𝑘, 𝑖 = 0,1,2, …. 

And, the recurrence relation for Chebyshev 

polynomials of first kind are as follows: 

𝑇0(𝑦) = 1, 𝑇1(𝑦) = 𝑦 

𝑇𝑖+1(𝑦) = 2𝑦𝑇𝑖(𝑦) − 𝑇𝑖−1(𝑦), 𝑖 = 1,2, … 

Like Legendre polynomials, roots of the Chebyshev 

polynomials are in the interval (−1,1). In order to 

generate set of collocation points  

𝐶𝐶𝑃 = [𝑥𝑘]𝑘=0
𝑘=𝑛 

over the interval [𝑎, 𝑏], following points along with 

𝑥0 = 𝑎and 𝑥𝑛 = 𝑏 are considered. 

𝑥𝑘 =
𝑏 − 𝑎

2
+

𝑏 − 𝑎

2
𝑦𝑘   ; 𝑘 = 1,2, . . , 𝑛 − 1 

where 𝑦𝑘  are the roots of the Chebyshev 

polynomials 𝑇𝑛−1(𝑦) with 𝑦𝑘 < 𝑦𝑘+1 for 𝑘 =

1, 2, … , 𝑛 − 2. 

Bernstein polynomials: The ith degree Bernstein 

polynomials defined on the interval [𝑎, 𝑏] are 

𝐵𝑟,𝑖(𝑦) = (
𝑖

𝑟
)

(𝑦 − 𝑎)𝑟(𝑏 − 𝑦)𝑖−𝑟

(𝑏 − 𝑎)𝑖
 ;  𝑎 ≤ 𝑦 ≤ 𝑏,  

𝑟 = 0,1,2, … , 𝑖 

where 

(
𝑖

𝑟
) =

𝑖!

𝑟! (𝑖 − 𝑟)!
 

 

There are (𝑖 + 1) Bernstein polynomials of ith 

degree with following properties: 

𝐵𝑟,𝑖(𝑦) = 0, 𝑖𝑓𝑟 < 0 𝑜𝑟𝑟 > 𝑖 

𝐵𝑟,𝑖(𝑎) = 𝐵𝑟,𝑖(𝑏) = 0 , 1 ≤ 𝑟 ≤ 𝑖 − 1 

Lagrange basis polynomials: With  (𝑛 + 1) 

points 𝑥0, 𝑥1, 𝑥2, … . . , 𝑥𝑛−1, 𝑥𝑛 , Lagrange basis 

polynomials 𝐿𝑖(𝑥); 𝑖 = 0,1, 2, … , 𝑛 are defined by 

𝑙𝑝(𝑥) = ∏(𝑥 − 𝑥𝑟)

𝑛

𝑟=0

 

𝐿𝑖(𝑥) =
𝑙𝑝(𝑥)

𝑙𝑝′(𝑥)(𝑥 − 𝑥𝑖)
    ; 𝑖 = 0, 1,2, … , 𝑛 

with the property 𝐿𝑖(𝑥𝑗) = 𝛿𝑖𝑗, where 𝛿𝑖𝑗is the 

Kronecker delta function. Here 𝑙𝑝′(𝑥) is the 

derivative of  𝑙𝑝(𝑥). 

Fibonacci polynomials: Fibonacci polynomials 

are set of polynomials 𝐹𝑖(𝑢) defined by 

𝐹𝑖(𝑢) = ∑ (
𝑖 − 𝑘

𝑘
) 𝑢𝑖−2𝑘

⌊
𝑖

2
⌋

𝑘=0

,     𝑖 = 0,1,2, … 

And, the recurrence relation for Fibonacci 

polynomials are follows: 

𝐹0(𝑢) = 1, 𝐹1(𝑢) = 𝑢 

𝐹𝑖+1(𝑢) = 𝑢𝐹𝑖(𝑢) + 𝐹𝑖−1(𝑢),   𝑖 = 1,2,3, … 

Jacobi polynomials: Jacobi polynomials 

𝑃𝑖
𝛼,𝛽(𝑦) are set of orthogonal polynomials on the 

interval [−1, 1] with respect to the weight 

function (1 − 𝑦)𝛼(1 + 𝑦)𝛽. Roots of Jacobi 

polynomials are lies in the interval (−1,1). Hence, 

to generate set of collocation points  

𝐽𝐶𝑃 = [𝑥𝑘]𝑘=0
𝑘=𝑛 

over the interval [𝑎, 𝑏], the following points along 

with 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏 are considered: 

𝑥𝑘 =
𝑏 − 𝑎

2
+

𝑏 − 𝑎

2
𝑦𝑘   ; 𝑘 = 1,2, . . , 𝑛 − 1 

where 𝑦𝑘  are the roots of the Jacobi polynomials 

𝑃𝑛−1
1,1 (𝑦) with 𝑦𝑘 < 𝑦𝑘+1for 𝑘 = 1,2, … , 𝑛 − 2 and 

𝑃𝑖
𝛼,𝛽(𝑦) =

𝛤(𝛼 + 𝑖 + 1)

𝑖!  𝛤(𝛼 + 𝛽 + 𝑖 + 1)
 

∑ (
𝑖

𝑚
)

𝛤(𝛼 + 𝛽 + 𝑖 + 𝑚 + 1)

𝛤(𝛼 + 𝑚 + 1)

𝑖

𝑚=0

(
𝑦 − 1

2
)

𝑚

 

Gauss-Lobatto nodes: In order to generate set of 

collocation points 

𝐺𝐿𝐶𝑃 = [𝑥𝑘]𝑘=0
𝑘=𝑛 

over the interval [𝑎, 𝑏], let us consider: 

𝑥𝑘 =
𝑏 − 𝑎

2
+

𝑏 − 𝑎

2
cos

𝑘𝜋

𝑛
  ; 𝑘 = 0,1,2, . . , 𝑛 

Equally spaced nodes: In order to generate set 

of collocation points 

𝐸𝑆𝐶𝑃 = [𝑥𝑘]𝑘=0
𝑘=𝑛 

from equally spaced nodes over the interval 

[𝑎, 𝑏], following points are considered: 

𝑥𝑘 = 𝑎 + 𝑘
𝑏 − 𝑎

𝑛
 ; 𝑘 = 0,2, … , 𝑛 

 

1.2 Solution procedure for linear FVIE 

All integral equations can describe various 

physical phenomena, scientific and engineering 

problems. Linear Fredholm-Volterra integral 

equations of 2nd kind arises from different types of
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 differential equations and can be described in many 

physical phenomena which have scientific interests. 

Here we consider the following general form of 

linear Fredholm-Volterra integral equation of 2nd 

kind: 

𝜙(𝑥) + 𝜆1 ∫ 𝑘1(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡

𝑏

𝑎

 

+𝜆2 ∫ 𝑘2(𝑥, 𝑡)𝜙(𝑡)𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥),   𝑎 ≤ 𝑥 ≤ 𝑏        (1) 

where 𝑘1(𝑥, 𝑡), 𝑘2(𝑥, 𝑡) and 𝑓(𝑥) are known 

functions, 𝜆1 and 𝜆2  are known parameters, 

and 𝜙(𝑥) is the unknown solution of Eq. (1), needed 

to be resolved. 

To approximate the solution 𝜙(𝑥) of Eq. (1) 

using Galerkin and collocation methods, first let’s, 

consider the following form of the trial 

solution �̃�(𝑥): 

�̃�(𝑥) = ∑ 𝑚𝑖𝑄𝑖(𝑥)

𝑛

𝑖=0

                                           (2) 

Here 𝑄𝑖(𝑥) are called as basis functions and 

generally some known polynomials are used as basis 

function. In trial solution, 𝑚𝑖are the unknown 

parameters also known as expansion coefficients. 

Using the trial solution from Eq. (2) into Eq. (1), we 

can have 

∑ 𝑚𝑖𝑄𝑖(𝑥)

𝑛

𝑖=0

+ 𝜆1 ∫ 𝑘1(𝑥, 𝑡) ∑ 𝑚𝑖𝑄𝑖(𝑡)

𝑛

𝑖=0

𝑑𝑡

𝑏

𝑎

+ 𝜆2 ∫ 𝑘2(𝑥, 𝑡) ∑ 𝑚𝑖𝑄𝑖(𝑡)

𝑛

𝑖=0

𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥) 

⇒  ∑ 𝑚𝑖 [𝑄𝑖(𝑥) + 𝜆1 ∫ 𝑘1(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑏

𝑎

𝑛

𝑖=0

+ 𝜆2 ∫ 𝑘2(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑥

𝑎

]

= 𝑓(𝑥)                                 (3) 

To determine the expansion coefficients by Galerkin 

method, first multiply Eq. (3) by 𝑄𝑗(𝑥) and then 

integrate with respect to 𝑥 from a to b. Thus Eq. (3) 

reduces to 

∑ 𝑚𝑖 [∫ [𝑄𝑖(𝑥) + 𝜆1 ∫ 𝑘1(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑏

𝑎

𝑏

𝑎

𝑛

𝑖=0

+ 𝜆2 ∫ 𝑘2(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑥

𝑎

] 𝑄𝑗(𝑥)𝑑𝑥]

= ∫ 𝑓(𝑥)𝑄𝑗(𝑥)𝑑𝑥

𝑏

𝑎

;    𝑗 = 0,1, . . , 𝑛 

This is equivalent to the following linear system of 

equations: 

∑ 𝑚𝑖𝑅𝑖,𝑗 = 𝐹𝑗

𝑛

𝑖=0

, 𝑗 = 0,1,2, … , 𝑛                         (4) 

where 

𝑅𝑖,𝑗

= ∫ [𝑄𝑖(𝑥) + 𝜆1 ∫ 𝑘1(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑏

𝑎

𝑏

𝑎

+ 𝜆2 ∫ 𝑘2(𝑡, 𝑥)𝑄𝑖(𝑡)𝑑𝑡

𝑥

𝑎

] 𝑄𝑗(𝑥)𝑑𝑥 ; 

𝐹𝑗 = ∫ 𝑓(𝑥)𝑄𝑗(𝑥)dx

𝑏

𝑎

 , 𝑖, 𝑗 = 0,1,2, … , 𝑛 

System of linear equations in Eq. (4) is called the 

Galerkin equation and by solving Eq. (4), the 

expansion coefficients 𝑚𝑖can be determined easily.  

In collocation method, to determine expansion 

coefficients 𝑚𝑗, chose a point 𝑥𝑗 in the domain for 

each 𝑚𝑗 in the trial solution. These points 𝑥𝑗 are 

known as collocation points. Then forcing Eq. (3) to 

satisfy at each 𝑥𝑗 yields 

∑ 𝑚𝑖 [𝑄𝑖(𝑥𝑗) + 𝜆1 ∫ 𝑘1(𝑡, 𝑥𝑗)𝑄𝑖(𝑡)𝑑𝑡

𝑏

𝑎

𝑛

𝑖=0

+ 𝜆2 ∫ 𝑘2(𝑡, 𝑥𝑗)𝑄𝑖(𝑡)𝑑𝑡

𝑥

𝑎

]

= 𝑓(𝑥𝑗) ;                                 (5) 

 𝑗 = 0,1,2, … , 𝑛                       

Thus, a trial solution with (𝑛 + 1) unknown 

parameters produce following linear system of 

equations: 

∑ 𝑚𝑖𝐺𝑖,𝑗 = 𝐻𝑗

𝑛

𝑖=0

 ;       𝑗 = 0,1,2, … , 𝑛                (6) 

where
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𝐺𝑖,𝑗 = 𝑄𝑖(𝑥𝑗) + 𝜆1 ∫ 𝑘1(𝑡, 𝑥𝑗)𝑄𝑖(𝑡)𝑑𝑡

𝑏

𝑎

+ 𝜆2 ∫ 𝑘2(𝑡, 𝑥𝑗)𝑄𝑖(𝑡)𝑑𝑡

𝑥

𝑎

; 

𝐻𝑗 = 𝑓(𝑥𝑗) ,      𝑖, 𝑗 = 0,1,2, … , 𝑛         

System of linear equations in Eq. (6) is called the 

collocation equation and by solving Eq. (6), the 

expansion coefficients 𝑚𝑖 can be determined. So, 

once the set of basis functions {𝑄𝑖}𝑖=0
𝑛  is chosen then 

based on Galerkin or collocation approach, 

expansion coefficients 𝑚𝑖 can be found using Eqs. 

(4) or (6). And then substituting these values into Eq. 

(2) will give the approximate solution of FVIE of 

type II in terms of finite sum of series of 

functions {𝑄𝑖}𝑖=0
𝑛 . 

1.3 Results and discussion 

This research is performed to compare the 

performance of different polynomials in Galerkin 

method and different combinations of polynomials 

and sets of collocation points in collocation method 

for numerical approximations of linear Fredholm-

Volterra integral equation of 2nd kind. Followings 

are the list of polynomials and combinations used for 

these two methods: 

Table 2. Sets of basis and collocation points for both 

methods 

Galerkin Collocation 

Set of basis Set of basis Set of collocation 

points 

{𝑃𝑖}𝑖=0
𝑛  {𝑃𝑖}𝑖=0

𝑛  𝐿𝐶𝑃 

{𝑇𝑖}𝑖=0
𝑛  {𝑇𝑖}𝑖=0

𝑛  𝐶𝐶𝑃 

{𝐵𝑖,𝑛}𝑖=0
𝑛  {𝐵𝑖,𝑛}𝑖=0

𝑛  𝐽𝐶𝑃 

{𝐿𝑖}𝑖=0
𝑛  {𝐿𝑖}𝑖=0

𝑛  𝐸𝑆𝐶𝑃 

{𝐹𝑖}𝑖=0
𝑛  {𝐹𝑖}𝑖=0

𝑛  𝐺𝐿𝐶𝑃 

With 𝑛 = 5, five sets of collocation points for the 

interval [0,1] are as follows: 

Table 3. Sets of collocation points for 𝑛 = 5 

𝐿𝐶𝑃 {0,   0.0694318,   0.330009,   0.669991,   0.930568,   1} 

𝐶𝐶𝑃 {0,   0.0380602,   0.308658,   0.691342,   0.96194,   1} 

𝐽𝐶𝑃 {0,   0.117472,   0.357384,   0.642616,   0.882528,   1} 

𝐸𝑆𝐶𝑃 { 0,   0.2,   0.4,   0.6,   0.8,   1} 

𝐺𝐿𝐶𝑃 {0,   0.0954915,   0.345492,   0.654508,   0.904508,   1} 

Here two numerical examples are considered to 

carry out the investigations and in both examples 

domain of the problem is[0,1]. 

Example 1: Consider the following example of 

linear FVIE of 2nd kind: 

𝜙(𝑥) + ∫ 𝑒𝑥+𝑡𝜙(𝑡)𝑑𝑡

1

0

− ∫ 𝑒𝑥+𝑡𝜙(𝑡)𝑑𝑡

𝑥

0

= 𝑒−𝑥 − (𝑥 − 1)𝑒𝑥 ,   0 ≤ 𝑥 ≤ 1 

Exact solution of this problem is 𝜙(𝑥) = 𝑒−𝑥. 

At first, the performance of Legendre, Chebyshev, 

Bernstein, Lagrange’s and Fibonacci polynomials 

are observed in Galerkin method for this problem. 

Absolute errors of example 1 in Galerkin method for 

five sets of basis functions given in Table 2 with 𝑛 =

5 are presented in Fig. 1. 

 

Figure 1: Absolute error curves of example 1 in 

Galerkin method 

Now, performance of different combinations of 

polynomials and set of collocation points are 

observed in collocation method. Numerical 

solutions of example 1 in collocation method with 

different combinations given in Table 2 with 𝑛 = 5 

are given in the Table 4 and corresponding absolute 

error curves are presented in Fig. 2. 

 
Figure 2:Absolute error graphs of example 1 in 

collocation method 

Example 2: Consider the following example of 

linear FVIE of 2nd kind used by Wang and Wang, 

2013: 

𝜙(𝑥) + ∫ 𝑒𝑡 sin 𝑥 𝜙(𝑡)𝑑𝑡

1

0

− ∫ 𝑒𝑡 cos 𝑥 𝜙(𝑡)𝑑𝑡

𝑥

0

= 𝑓(𝑥) ,   0 ≤ 𝑥 ≤ 1 

where 

𝑓(𝑥) = 𝑒𝑥 −
1

2
(𝑒2𝑥 − 1) cos 𝑥 +

1

2
(𝑒2 − 1) sin 𝑥
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Exact solution of this problem is 𝜙(𝑥) = 𝑒𝑥 

 

Figure 3: Absolute error curves of example 2 in 

Galerkin method 

Like the previous example, at first, the 

performance of Legendre, Chebyshev, Bernstein, 

Lagrange’s and Fibonacci polynomials are observed 

in Galerkin method for this problem. Absolute errors 

of example 2 in Galerkin method for five sets of 

basis given in Table 2 with 𝑛 = 5 are presented in 

Fig. 3. 

Now, performance of different combinations of 

polynomials and set of collocation points are 

observed in collocation method. Numerical 

solutions of example 2 in collocation method with 

different combinations given in Table 2 with 𝑛 = 5 

are also given in Table 5 and corresponding absolute 

error curves are presented in Fig. 4. 

 
Figure 4: Absolute error graphs of example 2 in 

collocation method 

After investigation of the absolute errors of both 

examples in Galerkin method, it is evident that 

Legendre, Chebyshev, Fibonacci and Bernstein 

polynomials give better solution than Lagrange’s 

polynomial whereas solutions from first three 

polynomials are almost the same. Though there are 

some variations between solutions from Bernstein 

and Legendre, Chebyshev and Fibonacci but no 

clear conclusion can be made about the performance 

of the polynomials. In collocation method, 

performance of different combinations of basis 

functions and collocation point’s sets are consistent 

in both problems. Lagrange’s polynomials with 

ESCP handle the errors better than the others except 

around the both boundaries. Among rest of the 

combinations, overall performance of Bernstein & 

JCP, Fibonacci & GLCP, Legendry & LCP and 

Chebyshev& CCP follows the downward trend. 

1.4 Conclusion 

In this article, formulation of system of linear 

algebraic equations for linear FVIE of 2nd kind by 

both Galerkin and collocation methods are presented 

to determine the expansion coefficients. Then five 

different polynomials: Legendre, Chebyshev, 

Fibonacci, Bernstein and Lagrange’s are being used 

in Galerkin method. In both test problems, it is found 

that first four polynomials give better solution than 

Lagrange’s polynomials. It is also noticed that in 

Galerkin method, Legendre, Chebyshev and 

Fibonacci polynomials give the same solutions. In 

collocation method, five different combinations of 

polynomials and collocation points are being tried. 

All the combinations produced very good 

approximations. Lagrange’s polynomials and ESCP 

performed well compared to the others followed by 

Bernstein and JCP and performance of Chebyshev 

polynomials and CCP are worst. 
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Appendix: A 

 

Table 4.Solutions of example 1 in  collocation method 

x Exact Legendre-LCP Chebyshev-CCP Bernstein-JCP Lagrange-ESCP Fibonacci-GLCP 

0. 1.000000000 0.999999986 0.999999903 0.999999998 0.999999881 1.000000005 

0.1 0.904837418 0.904837092 0.904836653 0.904837641 0.904838360 0.904837405 

0.2 0.818730753 0.818729658 0.818729327 0.818730116 0.818730779 0.818729914 

0.3 0.740818221 0.740817567 0.740817534 0.740817669 0.740817892 0.740817617 

0.4 0.670320046 0.670320480 0.670320739 0.670320224 0.670319988 0.670320325 

0.5 0.606530660 0.606531784 0.606532207 0.606531326 0.606530834 0.606531513 

0.6 0.548811636 0.548812524 0.548812934 0.548812086 0.548811627 0.548812264 

0.7 0.496585304 0.496585344 0.496585583 0.496585121 0.496584944 0.496585206 

0.8 0.449328964 0.449328427 0.449328428 0.449328497 0.449328692 0.449328457 

0.9 0.406569660 0.406569434 0.406569283 0.406569672 0.406570054 0.406569563 

1 0.367879441 0.367879441 0.367879441 0.367879441 0.367879441 0.367879441 

 

Table 5. Solutions of example 2 in Galerkin method 
 

x Exact Legendre-LCP Chebyshev-CCP Bernstein-JCP Lagrange-ESCP Fibonacci-GLCP 

0. 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000 

0.1 1.105170918 1.105170213 1.105169417 1.105171419 1.105173304 1.105170874 

0.2 1.221402758 1.221400338 1.221399830 1.221401287 1.221402990 1.221400838 

0.3 1.349858808 1.349857556 1.349857808 1.349857597 1.349858176 1.349857533 

0.4 1.491824698 1.491826169 1.491827164 1.491825292 1.491824689 1.491825620 

0.5 1.648721271 1.648724368 1.648725755 1.648723001 1.648721761 1.648723539 

0.6 1.822118800 1.822121010 1.822122279 1.822119788 1.822118734 1.822120264 

0.7 2.013752707 2.013752392 2.013753071 2.013751894 2.013751763 2.013752061 

0.8 2.225540928 2.225539027 2.225538900 2.225539481 2.225540514 2.225539247 

0.9 2.459603111 2.459602416 2.459601769 2.459603380 2.459604871 2.459602945 

1 2.718281828 2.718281822 2.718281707 2.718281828 2.718281631 2.718281844 

 


