
Available online at http://www.ssstj.sci.ssru.ac.th

Suan Sunandha Science and Technology Journal
©2021 Faculty of Science and Technology, Suan Sunandha Rajabhat University

Vol.08, No.1 DOI: 10.14456/ssstj.2021.2
9

WNN : File Format for Neural Network Interchange
Anirudh Giri

Department of Computer Science Engineering, SRMIST Kattankulathur, India
 Corresponding author e-mail: anirudhges@gmail.com

Received: 16 June 2020 / Revised: 1 November 2020 / Accepted: 27 November 2020

Abstract
A programming language agnostic, neural network library agnostic, standardized file format used to save an
already trained neural network model would facilitate the process of sharing or releasing said neural network
model online in a simplistic fashion. A standard file format for saving neural network models would include
metadata about the neural network such as the number of inputs, hidden layers, nodes per hidden layer, outputs
and the activation function used along with the weights and bias values. Such a file can be parsed to reconstruct a
neural network model in any programming language or library and would remove a neural network model's
dependency on the library it was created on.

Keywords: Artificial neural networks, File format, Neural network model sharing, Neural network model saving

1. Introduction

Due to the recent spike in interest resulting
from the developments in the fields of Artificial
Intelligence and Machine Learning, there has been
no shortage of neural network libraries such as
TensorFlow by Google, PyTorch by Facebook,
Keras, DeepLearning4J, OpenNN, FANN, and
much more (Erickson, Korfiatis, Akkus, Kline, &
Philbrick, 2017).

The ability to save a trained neural network
model on disk for reuse is provided by all major
neural libraries but each library uses its own
approach to save a neural network model and they
are incompatible with each other. This hinders
advancements in the machine-learning field as it
imposes restrictions on how much a neural network
model can be shared between users. This is
analogous to designing a webpage that will only load
as intended on one web browser and will fail to load
on all other browsers.

1.1 Neural networks at their core

A neural network, at its core, is described
as a universal function approximator (Hornik,
Stinchcombe, & White, 1989; Poggio & Girosi,
1990). It can be represented as a collection of
floating-point numbers, along with some metadata.
A neural network is defined by its constituent weight
and bias values, and anything else that has to do with
a neural network (such as the ability to feed forward
the input values and obtain an output) is up to the
implementation.

Thus, a file that contains the weights and
bias values, along with some important header
information such as the number of inputs, number of
outputs, number of hidden layers, number of nodes

per hidden layer and the employed activation
function (sigmoid, ReLU, tanh, etc.) can be used to
reconstruct a neural network in the language or
neural network library of the user’s choice.

1.2 History and background information

The idea of artificial neural networks was
first conceived by Warren McCulloch and Walter
Pitts (McCulloch & Pitts, 1943) who created a
computational model for artificial neural networks
based on algorithms called threshold logic.
Breakthroughs in the field of computer science that
made use of artificial neural networks include the
creation of the perceptron in 1958 by Frank
Rosenblatt (Rosenblatt, 1958) and the formulation
of the backpropagation algorithm in 1986
(Rumelhart, Hinton, & Williams, 1986).

1.3 Notations and terminology

Superscript – denotes the layer of the
neural network

Subscript – denotes the specific node in a
layer (starting with 0 at the top)
𝑤𝑤 – denotes the weight between two nodes
𝑏𝑏 – denotes the bias value of the node

2. The Proposed Format

WNN (Weights of Neural Network) is the
proposed file format whose intended use is to save
neural network models in a programming language
and neural network library agnostic way.

A WNN file can be downloaded from a
neural network repository or obtained through a

Available online at http://www.ssstj.sci.ssru.ac.th

Suan Sunandha Science and Technology Journal
©2021 Faculty of Science and Technology, Suan Sunandha Rajabhat University

Vol.08, No.1 DOI: 10.14456/ssstj.2021.2
10

CDN and can be parsed* to recreate a functioning
neural network model without the need to train the
neural network again.

The wnn file will consist of three parts –

• Header Information

• Weight Values

• Bias Values

Header Information
The file must begin by listing the following

information in order, separated by a line break –

• Number of Inputs
• Number of Hidden Layers
• Number of Nodes in each Hidden Layer
• Number of Outputs
• Employed activation function for each

layer

The number of nodes in each hidden layer
should be listed in the same line, separated by
spaces. If all hidden layers have the same number of
nodes, listing that number once should suffice.

The employed activation function should
be represented by a single-digit integer, ranging
from 0 to 7, according to the given table –

Value Activation Function
0
1
2
3
4
5
6
7

Sigmoid
Tanh

Arctan
Softmax
Softplus
ReLU

Leaky ReLU
ELU

In case the activation function being

employed is Leaky ReLU(𝑦𝑦 = max(𝛂𝛂𝛂𝛂, 𝛂𝛂)) or the

ELU�𝑦𝑦 = �𝛂𝛂(𝐞𝐞𝛂𝛂 − 𝟏𝟏), 𝑥𝑥 < 0
𝑥𝑥, 𝑥𝑥 ≥ 0�, the α value must be

listed with the activation function index separated by
a whitespace.

*Sample WNN file and parser can be found at
https://www.github.com/anirudhgiri/WNN-File-

Parser

The Weight Values
Following the header information,

separated by a line feed, will be the value of the
weights of the connections between each node.

Let 𝑤𝑤𝑖𝑖𝑖𝑖𝐿𝐿 be a weight value of the connection
between nodes of index i and j in the layers L and
L+1 respectively (Clarkson, 1996).
Let 𝑚𝑚 be the number of nodes in the preceding layer
and 𝑛𝑛 be the number of nodes in the succeeding
layer.

The weights of the same layer should be
listed as a group, separated by spaces, and each
group of weights per layer should be separated by
line feeds as follows –

𝑤𝑤00
0 𝑤𝑤010 𝑤𝑤020 … 𝑤𝑤0(𝑛𝑛−1)

0 𝑤𝑤10
0 𝑤𝑤110 𝑤𝑤120 … 𝑤𝑤(𝑚𝑚−1)(𝑛𝑛−1)

0
𝑤𝑤00
1 𝑤𝑤011 𝑤𝑤021 … 𝑤𝑤0(𝑛𝑛−1)

1 𝑤𝑤10
1 𝑤𝑤111 𝑤𝑤121 … 𝑤𝑤(𝑚𝑚−1)(𝑛𝑛−1)

1
 .
 .
 .
𝑤𝑤00
𝐿𝐿 𝑤𝑤01𝐿𝐿 𝑤𝑤02𝐿𝐿 … 𝑤𝑤0(𝑛𝑛−1)

𝐿𝐿 𝑤𝑤10
𝐿𝐿 𝑤𝑤11𝐿𝐿 𝑤𝑤12𝐿𝐿 … 𝑤𝑤(𝑚𝑚−1)(𝑛𝑛−1)

𝐿𝐿

The Bias Values

Let 𝑏𝑏𝑖𝑖𝐿𝐿 be the bias of the ith node in the Lth

layer of the neural network. Let m be the number of
nodes in the corresponding layer. The biases of each
node in a layer should be listed in a line, separated
by spaces, and each layer should be separated by a
line feed as follows –

𝑏𝑏00 𝑏𝑏10 𝑏𝑏20 … 𝑏𝑏(𝑚𝑚−1)
0

𝑏𝑏01 𝑏𝑏11 𝑏𝑏21 … 𝑏𝑏(𝑚𝑚−1)
1

 .
 .
 .

𝑏𝑏0𝐿𝐿 𝑏𝑏1𝐿𝐿 𝑏𝑏2𝐿𝐿 … 𝑏𝑏(𝑚𝑚−1)
𝐿𝐿

Available online at http://www.ssstj.sci.ssru.ac.th

Suan Sunandha Science and Technology Journal
©2021 Faculty of Science and Technology, Suan Sunandha Rajabhat University

Vol.08, No.1 DOI: 10.14456/ssstj.2021.2
 11

Figure 1. A sample neural network with the correct
notations for reference.

3. Examples and Experimentation

Taking a neural network model with 2
inputs, 2 hidden layers with 2 nodes in the first
hidden layer and 1 node in the second hidden layer
and 2 outputs where all layers use the ReLU
activation function (except the output layer, which
uses the softmax function) and where all the weights
and biases are set to 0, the resulting WNN file was
generated as follows -

Another wnn file for a deep neural network
model to simulate the XOR function was generated.
The WNN file was as follows –

The model consisted of 2 inputs, 1 hidden
layer, 2 nodes in the hidden layer and 1 output where
all layers used the sigmoid activation function.

4. Results and Discussions

The parser was successfully able to retrieve
enough information from both files to be able to
rebuild the artificial/deep neural network model
which their respective wnn file was describing.

Figure 2. The output of the parser program when it
was served with the example wnn file listed in
section 4.

Figure 3. The output of the parser program when it
was served with the example WNN file listed in
section 4.

5. Scope for the Future

A standard file format, if used by all major
neural network libraries to save models and load
them with their own parsers, would be greatly
beneficial to the field of artificial intelligence and
machine learning. It could give rise to a centralised
repository for neural network models hosted on the
cloud where machine learning engineers can

2
2
2 1
2
5 5 5 3
0 0 0 0
0 0
0 0
0 0
0 0
0

2
1
2
1
0
13.83 13.83 15.31 15.31
-11.52 11.52
-19.35 -6.78
-5.13

Available online at http://www.ssstj.sci.ssru.ac.th

Suan Sunandha Science and Technology Journal
©2021 Faculty of Science and Technology, Suan Sunandha Rajabhat University

Vol.08, No.1 DOI: 10.14456/ssstj.2021.2
 12

collaborate to create the most efficient models for all
sorts of use cases.

Neural network models with high
prediction accuracies could be searched for online
through a catalogue instead of training them from
scratch every time they are needed. It would be
similar to using open source libraries from GitHub
instead of writing the code from scratch every time
certain functionalities need to be added.

Software similar to package managers like
npm and pip could be created to access and
download neural network models through the
command line on demand.

6. Conclusion

This paper has described the need for a
standardized file format for neural network models,
the advantages of having the format, and the
potential applications that can be created to use the
format to facilitate the sharing of neural network
models over the internet.

This paper has also outlined the
specifications of such a file format. While the
proposed format is not perfect, has drawbacks (such
as its inefficiency in storing the topology of
networks where two adjacent layers are not
complete graphs) and is not universal as it does not
cover some exotic neural network types, WNN is a
start and can be used as a foothold to build a truly
universal and maximally efficient format.

7. References
Clarkson, T. G. (1996). Introduction to neural

networks. Neural Network World, 6(2), 123-
130. doi:10.1201/9781482277180-13

Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., &
Philbrick, K. (2017). Toolkits and libraries for
deep learning. Journal of Digital Imaging,
30(4), 400-405. doi:10.1007/s10278-017-
9965-6

Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer feedforward networks are
universal approximators. Neural Networks,
2(5), 359-366. doi:10.1016/0893-6080(89)
90020-8

McCulloch, W. S., & Pitts, W. (1943). A logical
calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical
Biophysics, 5, 115-133. doi:10.1007/BF
02478259

Poggio, T., & Girosi, F. (1990). Networks for
approximation and learning. Proceedings of
the IEEE, 78(9), 1481-1497. doi:10.1109/
5.58326

Rosenblatt, F. (1958). The perceptron: A
probabilistic model for information storage
and organization in the brain. Psychological
Review, 65(6), 386-408. doi:10.1037/

h0042519
Rumelhart, D. E., Hinton, G. E., & Williams, R. J.

(1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533-
536. doi:10.1038/323533a0

