Optimization of Oligosaccharide Extraction from Sponge Gourd Using Response Surface Methodology and Evaluation of Prebiotic Properties

การศึกษาสภาวะที่เหมาะสมในการสกัดโอลิโกแซ็กคาไรด์จากบวบหอมโดยใช้วิธีพื้นผิวตอบสนองและประเมินคุณสมบัติพรีไบโอติก

Authors

  • Katayut Yotsanoi Program in Toxicology and Nutrition for Food Safety, Institute of Nutrition, Mahidol University, Nakhon Pathom
  • Kanyawee Whanmek Institute of Nutrition, Mahidol University, Nakhon Pathom
  • Suwapat Kittibunchakul Institute of Nutrition, Mahidol University, Nakhon Pathom
  • Piya Temviriyanukul Institute of Nutrition, Mahidol University, Nakhon Pathom
  • Varongsiri Kemsawasd Institute of Nutrition, Mahidol University, Nakhon Pathom

Keywords:

Extraction, Sponge Gourd, Prebiotics, Oligosaccharides

Abstract

         Sponge gourd (Luffa aegyptica or Luffa cylindrica (L.) M. roem) is a local plant in the Cucurbitaceae family that is widely consumed in Thailand. A previous study demonstrated the potential of sponge gourd extracts in modulating gut microbiota in animal studies. This research aimed to determine the optimal conditions for extracting oligosaccharides from sponge gourd using hot water extraction to evaluate their prebiotic potential. Key extraction factors influencing oligosaccharide yield were examined, including 1) extraction temperature (X1) at 50, 70, and 90 °C, 2) solid-to-liquid ratio (X2) at 1:10, 1:20, and 1:30, and 3) pH (X3) at levels 2, 5, and 8, using Response Surface Methodology (RSM) with a Box-Behnken design (BBD). Our findings showed that increased extraction temperature and pH significantly enhanced yield, while the solid-to-liquid ratio had no significant impact on the yield. The highest yield was achieved at 90 °C and pH 8. Under these conditions, extracts were evaluated for prebiotic properties, assessing their tolerance in simulated gastrointestinal conditions and their impact on probiotic growth. Results demonstrated that the non-reducing sugars, representing oligosaccharides from sponge gourd, showed 87.72% resistance to digestive breakdown. Additionally, the extracts promoted the growth of three tested probiotic strains: Lactobacillus plantarum 299V, Lactobacillus casei Shirota, and Lactobacillus rhamnosus LGG. This highlights the potential of sponge gourd extract as an effective prebiotic, comparable to commercial alternatives. Future research should concentrate on purifying sponge gourd oligosaccharide extracts and exploring their functional properties in combination with probiotics to facilitate their development into health-enhancing food products.

Downloads

Download data is not yet available.

References

Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, et al. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int J Mol Sci. 2022;23(3):1105.

Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients. 2013;5(4):1417–35.

Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019;8(3):92.

Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6(3):285–306.

Buddington KK, Donahoo JB, Buddington RK. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr. 2002;132(3):472–7.

de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol. 2008;111:1–66.

Ibrahim OO. Functional Oligosaccharide: Chemicals Structure, Manufacturing, Health Benefits, Applications and Regulations. Food Chem Nanotechnol. 2018;4(4):65–76.

Huang H, Huang G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem Biol Drug Des. 2020;96(5):1209–22.

กลุ่มวิจัยอาหารเพื่อโภชนาการ สำนักโภชนาการ กรมอนามัย กระทรวงสาธารณสุข. บวบหอม [อินเทอร์เน็ต]. 2561 ก.ย. 1 [เข้าถึงเมื่อ 2567 พ.ย. 27]. เข้าถึงได้จาก: https://thaifcd.anamai.moph.go.th/nss/view.php?fID=04084

Wu H, Zhao G, Gong H, Li J, Luo C, He X, et al. A high-quality sponge gourd(Luffa cylindrica) genome. Hortic Res. 2020;7(1):128.

Abdel-Salam IM, Awadein NE, Ashour M. Cytotoxicity of Luffa cylindrica (L.) M. Roem. extract against circulating cancer stem cells in hepatocellular carcinoma. J Ethnopharmacol. 2019;229:89–96.

S AS, Vellapandian C. Phytochemical Studies, Antioxidant Potential, and Identification of Bioactive Compounds Using GC-MS of the Ethanolic Extract of Luffa cylindrica (L.) Fruit. Appl Biochem Biotechnol. 2022;194(9):4018–32.

Zhang L, Shi M, Ji J, Hu X, Chen F. Gut microbiota determines the prevention effects of Luffa cylindrica (L.) Roem supplementation against obesity and associated metabolic disorders induced by high-fat diet. Faseb j. 2019;33(9):10339–52.

Wang B, Liu Q, Huang Y, Yuan Y, Ma Q, Du M, et al. Extraction of Polysaccharide from Spirulina and Evaluation of Its Activities. Evid Based Complement Alternat Med. 2018;2018:3425615.

Chen J, Liang R-h, Liu W, Li T, Liu C-m, Wu S-s, et al. Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydr Polym. 2013;91(1):175–82.

Thirugnanasambandham K, Sivakumar V, Prakash Maran J. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydr Polym. 2014;112:622–6.

Wong Y-H, Tan C-P, Long K, Nyam K-L. In vitro simulated digestion on the biostability of Hibiscus cannabinus L. seed extract. Czech J Food Sci. 2014;32(2):177–81.

Lakho AB, Soomro AH, Hamed H. Effects of Pectin on the Reducing and Non-Reducing Sugar and Total Sugar Percentage of Date Jam. IISTE. 2017;7(3):84–7.

DuBois M, Gilles KA, Hamilton JK, Rebers Pt, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.

Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–8.

Kaushik P, Dowling K, Adhikari R, Barrow CJ, Adhikari B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017;215:333–40.

Li M, Heckwolf M, Crowe JD, Williams DL, Magee TD, Kaeppler SM, et al. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines. J Exp Bot. 2015;66(14):4305–15.

Hu JL, Nie SP, Min FF, Xie MY. Artificial simulated saliva, gastric and intestinal digestion of polysaccharide from the seeds of Plantago asiatica L. Carbohydr Polym. 2013;92(2):1143–50.

Liang L, Liu G, Zhang F, Li Q, Linhardt RJ. Digestibility of squash polysaccharide under simulated salivary, gastric and intestinal conditions and its impact on short-chain fatty acid production in type-2 diabetic rats. Carbohydr Polym. 2020;235:115904.

Losada MA, Olleros T. Towards a healthier diet for the colon: the influence of fructooligosaccharides and lactobacilli on intestinal health. Nutr Res. 2002;22(1–2):71–84.

Iliev I, Vasileva T, Bivolarski V, Momchilova A, Ivanova I. Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers. 2020;12(10):2387.

Pérez-Juárez CM, García Ortiz JD, Flores-Gallegos AC, Herrera-Gonzalez SM, Cruz-Requena M, Sáenz-Galindo A, et al. Prebiotic potential of melon (Cucumis melo L.) and watermelon (Citrullus lanatus) shell flours. Bioact Carbohydr Diet Fibre. 2024;32:100428.

Molan AL, Lila M, Ravindran G. Blueberries: Genotype-dependent variation in antioxidant, free-radical scavenging, and prebiotic activities. In: Mendez-Vilas A, editor. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Spain: Formatex Research Center; 2010. p. 427–434.

Bilraheem S, Srinuanpan S, Cheirsilp B, Upaichit A, Kawai F, Thumarat U. Optimization of pectin extraction from melon peel as a new source of pectin and pectin hydrolysate with prebiotic potential. Foods. 2024;13(16):2554.

Downloads

Published

01-07-2025

How to Cite

1.
Yotsanoi K, Whanmek K, Kittibunchakul S, Temviriyanukul P, Kemsawasd V. Optimization of Oligosaccharide Extraction from Sponge Gourd Using Response Surface Methodology and Evaluation of Prebiotic Properties: การศึกษาสภาวะที่เหมาะสมในการสกัดโอลิโกแซ็กคาไรด์จากบวบหอมโดยใช้วิธีพื้นผิวตอบสนองและประเมินคุณสมบัติพรีไบโอติก. AdvSciJ [internet]. 2025 Jul. 1 [cited 2025 Jul. 2];25(2):156-79. available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/1015

Issue

Section

Research Articles