The Evolution of Sequencing Technology for Microbial Diagnosis

วิวัฒนาการของเทคโนโลยีการหาลำดับพันธุกรรม เพื่อการวินิจฉัยเชื้อจุลชีพ

Authors

  • Witoon Thirakittiwatthana Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok
  • Vichaya Suttisunhakul Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok
  • Piya Wongyanin Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok
  • Potjaman Pumeesat Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok

Keywords:

Gene sequencing, Technology, Evolution

Abstract

          Over the past few decades, gene sequencing technology has become one of the most prominent tools in medical microbiology, widely applied in areas such as cancer diagnosis, the study of rare genetic diseases, microbial detection, and genome assembly. Currently, sequencing technologies can be classified into three main generations. The first-generation method, Sanger sequencing, employs chain-termination and gel electrophoresis to sequence DNA. In the second generation, Illumina sequencing utilizes bridge amplification for high-throughput sequencing, while other technologies such as Ion Torrent and SOLiD offer alternative approaches. The third-generation technology, exemplified by PacBio sequencing, allows for long-read sequencing, enabling the analysis of more complex genomic regions.

          As sequencing technologies evolve, the focus has shifted toward reducing costs, improving accuracy, and minimizing processing times. Oxford Nanopore Technology (ONT), a more recent advancement, is often considered a part of third-generation sequencing. It enables real-time monitoring by detecting changes in electrical current as DNA or RNA molecules pass through a nanopore.

         Despite the widespread application of these technologies in medical microbiology, certain limitations remain. For instance, current sequencing methods struggle to simultaneously detect multiple bacterial species in mixed samples. Additionally, compared to traditional diagnostic methods, the high costs of sequencing technologies present a significant barrier to their broader adoption in clinical settings.

Downloads

Download data is not yet available.

References

Pray L. Discovery of DNA structure and function: Watson and crick. Nat Educ [Internet]. 2008 [cited 2025 Decl 23];1(1):100. Available from: https://www.fcav.unesp.br/Home/departamentos/tecnologia/marcostuliooliveira/discovery-of-dna-double-helix_-watson-and-crick-_-learn-science-at-scitable.pdf

Hilt EE, Ferrieri P. Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases. Genes (Basel). 2022 Aug 31;13(9):1566. doi:10.3390/genes13091566

Lin B, Hui J, Mao H. Nanopore technology and its applications in gene sequencing. Biosensors. 2021 Jun 30;11(7):214. doi:10.3390/bios11070214

Sivaradjy M, Rajkumari N. Role of gene sequencing in the diagnosis, tracking and prevention of parasitic diseases–A brief review. J Acad Clin Microbiol. 2022 Nov;24(Suppl 1):S32-5. doi:10.4103/jacm.jacm_15_22

Bhar A. The application of next generation sequencing technology in medical diagnostics: a perspective. Proc Indian Natl Sci Acad. 2022 Aug;88: 592–600. doi:10.1007/s43538-022-00098-x

Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-generation sequencing technology: current trends and advancements. Biology. 2023 Jul;12(7):997. doi:10.3390/biology12070997

Yu X, Jiang W, Shi Y, Ye H, Lin J. Applications of sequencing technology in clinical microbial infection. J Cell Mol Med. 2019;23(11):7143-50. doi:10.1111/jcmm.14624

Church DL. Principles of Capillary-Based Sequencing for Clinical Microbiologists. Clin Microbiol Newsl. 2013 Jan 15;35(2):11-8. doi:10.1016/j. clinmicnews.2012.12.003.

Mehdi K, Gibrat JF, Elloumi M. Generations of sequencing technologies: from first to next generation. Electromagn Biol Med (Aligarh). 2017 Mar;9(395):1-8. doi:10.4172/0974-8369.1000395

Tipu HN, Shabbir A. Evolution of DNA sequencing. J Coll Physicians Surg Pak. 2015 Mar;25(3):210-5.

Barba M, Czosnek H, Hadidi A. Historical perspective, development and applications of next-generation sequencing in plant virology. Viruses. 2014 Jan 6;6(1):106-36. doi:10.3390/v6010106.

Hutchison III CA. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 2007;35(18):6227-37. doi:10.1093/nar/gkm688.

Rybicka M, Stalke P, Bielawski KP. Current molecular methods for the detection of hepatitis B virus quasispecies. Rev Med Virol. 2016 Sep;26(5):369-81. doi:10.1002/ rmv.1897

Fakruddin M, Chowdhury A, Hossain N, Mahajan S, Islam S. Pyrosequencing: A next generation sequencing technology. World Appl Sci J. 2013;24(12):1558-71. doi:10.5829/idosi.wasj.2013.24.12.2972

Buermans H PJ, Den Dunnen JT. Next generation sequencing technology: advances and applications. Biochim Biophys Acta Mol Basis Dis. 2014 Oct;1842(10):1932-41. doi:10.1016/j.bbadis.2014.06.015

Hackl ST, Harbig TA, Nieselt K. Technical report on best practices for hybrid and long read de novo assembly of bacterial genomes utilizing Illumina and Oxford Nanopore Technologies reads. bioRxiv. 2022 Oct;10(25):513682; doi:10.1101/2022.10.25.513682

กิตติพัฒน์ อุโฆษกิจ, มาริสา รักสุขสมบัติ, สุภาภรณ์ ขานโบ. เทคโนโลยีการวิเคราะห์ลำดับเบสยุคที่สองและสาม. วารสารวิทยาศาสตร์และเทคโนโลยี. 2015;23(4),633-50.

Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89. doi:10.1016/j.gpb.2015. 08.002.

Magi A, Semeraro R, Mingrino A, Giusti B, D’aurizio R. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform. 2018 Nov;19(6):1256-72. doi:10.1093/bib/bbx062.

Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021 Nov;39(11):1348-65. doi:10.1038/s41587-021-01108-x

Chou YC, Masih Das P, Monos DS, Drndić M. Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano. 2020 Jun 23;14(6):6715-28. doi:10.1021/acsnano.9b09964.

Bhatti H, Lu Z, Liu Q. Nanopore detection of cancer biomarkers: A challenge to science. Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221076669. doi:10.1177/15330338221076669.

ชาญวิทย์ ตรีพุทธรัตน์. การศึกษาอณูพันธุศาสตร์และระบาดวิทยาของแบคทีเรียดื้อต่อยาปฏิชีวนะด้วยเทคนิค Next Generation Sequencing (NGS). ใน: การประชุมวิชาการ พันธุศาสตร์แห่งชาติ ครั้งที่ 18. พันธุศาสตร์ก้าวหน้าสู่อาเซียน (Genetics towards ASEAN); 17-19 ก.ค. 2556; กรุงเทพฯ: สมาคมพันธุศาสตร์แห่งประเทศไทย; Thai J Genet; 2013;S(1):46-51. doi:10.14456/tjg.2013.105

Zhu X, Yan S, Yuan F, Wan S. The applications of nanopore sequencing technology in pathogenic microorganism detection. Can J Infect Dis Med Microbiol. 2020 Dec 31;2020:6675206. doi:10.1155/2020/6675206.

Mignardi M, Nilsson M. Fourth-generation sequencing in the cell and the clinic. Genome Med. 2014 Apr 28;6(4):31. doi:10.1186/gm548

Ke R, Mignardi M, Hauling T, Nilsson M. Fourth generation of next‐generation sequencing technologies: Promise and consequences. Hum Mutat. 2016 Dec;37(12):1363-7. doi:10.1002/humu.23051

Pérez-Cobas AE, Gomez-Valero L, Buchrieser C. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Microb Genomics. 2020 Aug;6(8):e000409. doi:10.1099/mgen.0.000409.

Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LM. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021 Mar 9;13(3):886. doi:10.3390/nu13030886.

Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021 Jan-Dec;13(1):1882927. doi:10.1080/19490976.2021.1882927.

Nakayama SI, Tribuddharat C, Prombhul S, Shimuta K, Srifuengfung S, Unemo M, et al. Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok, Thailand. Antimicrob Agents Chemother. 2012 Feb;56(2):916-20. doi:10.1128/AAC.05665-11

Bryan G. The pros and cons of NGS-based microbe detection [Internet]. 2022 [cited 2025 Dec 23]. Available from: https://www.clinicallab.com/trends/clinical-microbiology/the-pros-and-cons-of-ngs-based-microbe-detection-26167

Downloads

Published

01-01-2026

How to Cite

1.
Thirakittiwatthana W, Suttisunhakul V, Wongyanin P, Pumeesat P. The Evolution of Sequencing Technology for Microbial Diagnosis: วิวัฒนาการของเทคโนโลยีการหาลำดับพันธุกรรม เพื่อการวินิจฉัยเชื้อจุลชีพ. AdvSciJ [internet]. 2026 Jan. 1 [cited 2026 Jan. 11];26(1):1-21. available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/893

Issue

Section

Academic Article