Time Series Analysis for Predicting Import and Export Volumes Based on Deep Learning

การวิเคราะห์อนุกรมเวลาสำหรับการทำนายปริมาณการนำเข้าและส่งออกสินค้าโดยใช้การเรียนรู้เชิงลึก

Authors

  • Tomeyot Sanevong Na Ayutaya Computer Animation and Multimedia program, Faculty of Science and Technology , Phranakhon Rajabhat University, Bangkok

Keywords:

Time Series, Regression, Machine Learning

Abstract

           A trade deficit often indicates that a country is consuming more goods than it can produce itself. A trade deficit can have both positive and negative impacts on the economy of a country. Therefore, forecasting the overall value of imports and exports of a country in advance is very beneficial for strategic planning to manage potential problems arising from a trade deficit. For these reasons, this research studies, analyzes, and compares time series models that can be used to predict the overall volume of imports and exports using statistical methods and machine learning methods including DNN, LSTM, ARIMA, and Prophet. The Mean Squared Error (MSE) values are 0.4116615060290905, 0.9943514149915439, 0.5022269255490994, and 1.4212623390468428, respectively, while the Root Mean Squared Error (RMSE) values are 0.6416085302028727, 0.9971717078776071, 0.7086797058961822, and 1.1921670768171897, respectively. The experimental results conclude that the DNN model provides the highest efficiency in forecasting both the import and export volumes of goods and services for the country.

Downloads

Download data is not yet available.

References

Sun M, Yang H. Forecasting Model of Fishery Import and Export Trade Data Using Deep Learning Method. In: 2023 International Conference on Blockchain Technology and Applications (ICBTA); 2023; Beijing, China. p. 48-51.

Luchko MR, Dziubanovska N, Arzamasova O. Artificial Neural Networks in Export and Import Forecasting: An Analysis of Opportunities. In: 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS); 2021 Sep 22-25; Cracow, Poland. p. 916-23.

Zhang S, Liu Y. Forecasting Model of Total Import and Export Based on ARIMA Algorithm Optimized by BP Neural Network. In: 2023 IEEE 3rd International Conference on Data Science and Computer Application (ICDSCA); 2023 Dec 1-4; Dalian, China. p. 1534-8.

Xie Q, Xie Y. Forecast of The Total Volume of Import-Export Trade Based on Grey Modelling Optimized by Genetic Algorithm. In: 2009 Third International Symposium on Intelligent Information Technology Application; 2009; Nanchang, China. p. 545-7.

Yang CH, Lee CF, Chang PY. Export- and import-based economic models for predicting global trade using deep learning. Expert Syst Appl. 2023 May;218:1189-232.

Ministry of Finance of Thailand. Import-Export Summary [Internet]. [cited 2024 Jun 6]. Available from: https://dataservices.mof.go.th/menu6?id=6

Yusof UK, Khalid MNA, Hussain A, Shamsudin H. Financial time series forecasting using Prophet. In: International Conference of Reliable Information and Communication Technology; 2020 Dec; Cham: Springer International Publishing. p. 485-95.

Gao J. Time-series prediction research based on combined Prophet-LSTM models. In: 2022 18th International Conference on Computational Intelligence and Security (CIS); 2022; Chengdu, China. IEEE; 2022. p. 143-7.

Downloads

Published

01-07-2025

How to Cite

1.
Sanevong Na Ayutaya T. Time Series Analysis for Predicting Import and Export Volumes Based on Deep Learning: การวิเคราะห์อนุกรมเวลาสำหรับการทำนายปริมาณการนำเข้าและส่งออกสินค้าโดยใช้การเรียนรู้เชิงลึก. AdvSciJ [internet]. 2025 Jul. 1 [cited 2025 Jul. 25];25(2):146-55. available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/922

Issue

Section

Research Articles