Design and Development of Machinery Noise Protection Equipment Using Sound Absorbing Materials Made from Rice Husks, Coconut Husks and Rice Straw

การออกแบบและพัฒนาอุปกรณ์ป้องกันเสียงเครื่องจักรด้วยวัสดุดูดซับเสียงจากแกลบ ขุยมะพร้าว และฟางข้าว

Authors

  • Yothin Ponprathom Occupational Health and Safety Program, Faculty of Science and Technology, Bansomdejchaopraya Rajaphat University, Bangkok
  • Visa Phacharoen Occupational Health and Safety Program, Faculty of Science and Technology, Bansomdejchaopraya Rajaphat University, Bangkok
  • Netnapa Rueangman Occupational Health and Safety Program, Faculty of Science and Technology, Bansomdejchaopraya Rajaphat University, Bangkok

Keywords:

Sound absorbing materials, Rice husk, Coconut husk

Abstract

                                           Abstract

          This research is a development study aimed at designing and developing a noise protection device for machinery using sound-absorbing materials made from rice husks, coconut husks, and rice straw. The device was tested in a sausage production factory over an 8-hour work period, with a sample population of 23 participants. Data were collected using a questionnaire, and statistical analysis was conducted using descriptive statistics, such as percentage analysis, mean, and standard deviation.The study found that the noise protection device using rice husk material reduced the noise level by 2.9 dB(A), coconut husk by 2.4 dB, and rice straw by 2.1 dB(A). The rice husk material effectively reduced noise in the frequency range of 500-4000 Hz, while coconut husk was more effective in reducing noise in the frequency range of 8000-16000 Hz.The satisfaction analysis showed that the safety aspect of the coconut husk material had an average score of 3.82, indicating a high level of satisfaction, with a standard deviation of 0.70. The strength aspect had an average score of 3.85, also reflecting high satisfaction, with a standard deviation of 0.99. The comfort of use had an average score of 3.82, and the maintenance aspect had an average score of 3.83, both indicating a high level of satisfaction, with standard deviations of 0.93 and 0.91, respectively.

Downloads

Download data is not yet available.

References

Błasiak M, Miesikowska M, Nowakowski Ł. Analiza zmian poziomu cisnienia akustycznego wrzeciona obrabiarki w strefie pracy operatora. Mechanik. 2015; 8–9:390-8. doi:10.17814/mechanik.2015.8-9.449

Reed AC, Centanni TM, Borland MS, Matney CJ, Engineer CT, Kilgard MP. Behavioral and neural discrimination of speech sounds after moderate or intense noise exposure in rats. Ear Hear. 2014 Nov-Dec;35(6):e248–e261. doi:10.1097/AUD.0000000000000062

Maassen M, Babisch W, Bachmann K, Ising H, Lehnert G, Plath P, et al. Ear damage caused by leisure noise. Noise and Health. 2001;4(13):1–16.

Miko E, Nowakowski Ł. Vibrations in the Machining System of the Vertical Machining Center. XIIIth International Scientific and Engineering Conference Hermetic Sealing. Vibration Reliability and Ecological Safety of Pump and Compressor Machinery–Hervicon. 2012;39:405-13.

Sadowski J. Mozliwosci zmniejszenia hałasu technologicznego przecinarek tarczowych do drewna. Inż. Ap. Chem. 2011;50(3):71–72.

Nelson D.I, Nelson RY, Concha-Barrientos M, Fingerhut M. The global burden of occupational noise-induced hearing loss. Am J Ind Med. 2005;48(6):446-58. doi:10.1002/ajim.20223

Sliwinska-Kowalska M, and Davis A. Noise-induced hearing loss. Noise Health. 2012 Nov-Dec;14(61):274-80. doi:10.4103/1463-1741.104893

Kim Y, Park J, Park M. Creating a culture of prevention in occupational safety and health practice. Saf Health Work. 2016 Jun;7(2):89-96.doi: 10.1016/j.shaw.2016.02.002

Ramos F.E.A.L.O, Lacerda A.B.M, Soares V.M.N. and Willig M.H. Atividade de grupo como estratégia de educação em saúde auditiva de trabalhadores de um serviço de manutenção hospitalar. Audiol Commun Res. 2017;22:e1809. doi:10.1590/2317-6431-2016-1809

Nahvi H, Fouladi MH, Nor MJM. Evaluation of whole-body vibration and ride comfort in a passenger car. Int J Acoust Vib. 2009;14(3):143-9.

Rmili W, Ouahabi, A, Serra R. and Kious M. Tool Wear Monitoring in Turning Processes Using Vibratory Analysis. Int J Acoust Vib. 2009;14(1):4-11.

Upadhyay S.H, Harsha S.P. and Jain S.C. Vibration Signature Analysis of High-Speed Unbalanced Rotors Supported by RollingElement Bearings due to Off-Sized Rolling Elements. Int J Acoust Vib. 2009;14(3):163-71.

Roozen NB, van der Oetelaar J, Geerlings A, Vliegenthart T. Source identification and noise reduction of a reciprocating compressor: a case history. Int J Acoust Vib. 2009;14(2):90-98. doi:10.20855/ijav.2009.14.2241.

Chavan A.T. and Manik D.N. Optimum Design of Vibro-acoustic Systems Using SEA. Int J Acoust Vib. 2008;13(2):67-81.

Nick A, Becker U, Thoma W. Improved acoustic behavior of interior parts of renewable resources in the automotive industry. J Polym Environ. 2002;10(3):115-8.

Delany ME, Bazley EN., Acoustical properties of fibrous absorbent materials. Appl. Acoust.1970;3(2):105-16. doi:10.1016/0003-682X(70)90031-9

Luo Y, Li Y. Acoustical studies of natural fiber reinforced composites.J Mater Eng. 2010;4:51–54.

Mahzan S, Zaidi AMA, Yahya MN, Ismail M. Investigation on Sound Absorption of Rice-Husk Reinforced Composite. In: MUCEET 2009. 2009 Jan;4:19–22.

Olivier BP. The rice hull house. Development. 1989;1-13.

Das MR, Satapathy S, Pothal LK. Materials today proceedings comparative analysis of bricks as sound absorbing material. Mater Today: Proceedings. 2024 Jan 18;8:125–32. doi:10.1016/j.matpr.2024.01.020

Akinterinwa A, Umar Atiku J, Eneche JE, Shalbugau KW. Preliminary evaluation of composite panels produced from rice husk and recycled polystyrene material. J Mod Mater. 2020;7(1):45–53.

Da Silva CCB, Terashima FJH, Barbieri N, De Lima KF. Sound absorption coefficient assessment of sisal, coconut husk and sugar cane fibers for low frequencies based on three different methods. Appl Acoust. 2019;156:92–100.

Setyowati E, Yahya I, Supriyo E, Romadhona IC, Minardi A. On the sound absorption improvement of water hyacinth and coconut husk based fiber reinforced polymer panel. MATEC Web Conf. 2018;159:01004:1-6. doi:10.1051/matecconf/201815901004

Sakamoto S, Takauchi Y, Yanagimoto K, Watanabe S. Study for sound absorbing materials of biomass tubule etc. J Environ Eng. 2011;6(2):352–64.

Yang HS, Kim DJ, Kim HJ. Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresour Technol. 2003;86(2):117–21.

Alessandro F, Asdrubali F, Mencarelli N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build Environ. 2015;94:913–23.

Downloads

Published

01-01-2026

How to Cite

1.
Ponprathom Y, Phacharoen V, Rueangman N. Design and Development of Machinery Noise Protection Equipment Using Sound Absorbing Materials Made from Rice Husks, Coconut Husks and Rice Straw: การออกแบบและพัฒนาอุปกรณ์ป้องกันเสียงเครื่องจักรด้วยวัสดุดูดซับเสียงจากแกลบ ขุยมะพร้าว และฟางข้าว. AdvSciJ [internet]. 2026 Jan. 1 [cited 2026 Jan. 11];26(1):54-71. available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/924

Issue

Section

Research Articles