Water Treatment and Removal of Heavy Metals in Groundwater using Integrated Membranes on Drinking Water Quality Indexes

การบำบัดน้ำและกำจัดโลหะหนักในน้ำบาดาลด้วยเมมเบรนรวมตามดัชนีวัดคุณภาพน้ำดื่ม

Authors

  • Sunida Thongtho Environmental Science Program, Faculty of Science, Ubonratchathani Rajabhat University, Ubonratchathani
  • thitipong unchai Physics Program, Faculty of Science, Ubonratchathani Rajabhat University, Ubonratchathani

Keywords:

Groundwater, Drinking water, Heavy metal, Integrated membrane

Abstract

         This study aimed to develop a water treatment system for the removal of heavy metals (iron and manganese) from groundwater using an integrated membrane system, ensuring compliance with groundwater quality standards for consumption. The integrated membrane was composed of a mesh layer with a pore size of 1 mm, a thin-film layer of 0.05 mm, another thin-film layer of 0.001 mm, and a filtration layer made from synthetic polyamide material with a pore size of 0.0001 mm. The objective was to improve the chemical and physical properties of groundwater in Phibun Mangsahan District, Ubon Ratchathani Province, to acceptable levels. Groundwater quality was analyzed before and after treatment based on quality indices. The results indicated that the integrated membrane developed in this research effectively removed heavy metals from groundwater, achieving water quality indices within acceptable standards, including pH (7.01–7.45), hardness (122–144 mg/L), total dissolved solids (21.27–29.32 mg/L), sulphate (11–18 mg/L), chloride (11.18 mg/L), nitrate (2–10 mg/L), iron (0.06–0.16 mg/L), and manganese (0.01–0.09 mg/L), in compliance with the World Health Organization's 1996 drinking water standards as per the Ministry of Natural Resources and Environment's regulations, with a usage capacity of 10,000 liters.

Downloads

Download data is not yet available.

References

กรมทรัพยากรน้ำบาดาล. รายงานสถานการณ์คุณภาพสิ่งแวดล้อม พ.ศ. 2566. กรุงเทพฯ: สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม; 2566.

บุปผา โตภาคงาม. ดินเค็มภาคตะวันออกเฉียงเหนือ. พิมพ์ครั้งที่ 2. ขอนแก่น: มหาวิทยาลัยขอนแก่น; 2549.

ธริสรา จิรเสถียรพร, ชนกานต์ สกุลแถว, ชนัตถ์ โชคเจริญรัตน์, คณิศร์รวี เตชะเอื้อย, สมัคร สุจริต, ชัยณรงค์ สกุลแถว. การปนเปื้อนของโลหะหนักในน้ำบาดาล. วารสารวิทยาศาสตร์สุขภาพสัตว์และเทคโนโลยี. 2019;3(2):16-23.

Egli M, Zhang M-G, Plötze M, Tema E, Mohammadi M, Wang Q-B. Soil development trajectories, chemical weathering and pedogenic mineral (trans)formation on glauconitic calcarenites in a Mediterranean area. Catena. 2024;243:108177. doi:10.1016/j.catena.2024.108177

Han W, Pan Y, Welsch E, Liu X, Li J, Xu S. Prioritization of control factors for heavy metals in groundwater based on a source-oriented health risk assessment model. Ecotoxicol Environ Saf. 2023 Nov 15;267:115642. doi:10.1016/j.ecoenv.2023.115642

Lima VHS, Moura JP, Pissarra TCT, do Valle Junior RF, Silva M de M, Valera CA, et al. Groundwater flow and transport of metals under deposits of mine tailings: A case study in Brumadinho, Minas Gerais, Brazil. Stud Chem Environ Eng. 2024 Jun;9:100690. doi:10.1016/j.cscee.2024.100690

Zhao M, Zhou X, Li Z, Xu G, Li S, Feng R, et al. The dynamics and removal efficiency of antibiotic resistance genes by UV-LED treatment: An integrated research on single- or dual-wavelength irradiation. Ecotoxicol Environ Saf. 2023 Sep 15;263:115212. doi: 10.1016/j.ecoenv.2023.115212

Brandhuber P, Amy G. Alternative methods for membrane filtration of arsenic from drinking water. Desalination. 1998;117(1):1–10. doi:10.1016/ S0011-9164(98)00061-7

Daneluz J, da Silva GF, Duarte J, Turossi TC, dos Santos V, Baldasso C, et al. Membrane separation process of microfiltration applied to the filtration of kombuchas. Food Chem Adv. 2023 Dec;3:100451. doi:10.1016/j.focha. 2023.100451

Rizqi RA, Hartono YV, Shalahuddin I, Nugroho WA, Bilad MR, Arif C, et al. Green synthesis of polyvinylidene fluoride ultrafiltration membrane with upgraded hydrophilicity. Results Mater. 2023 Sep;19:100417. doi:10.1016/ j.rinma.2023.100417

Rychlewska K, Wodzisławska-Pasich K. Selection of membrane for production of drinking water from surface and groundwater by nanofiltration. Desalination Water Treat. 2024 Apr;318:100355. doi:10.1016/j.dwt.2024.100355

Geraldes V, Henriques P, Afonso MD, Alves AM, Pires RF, Faria M, et al. Designing centrifugal membrane filters with uniform-pressure for UF/NF/ RO separations. J Memb Sci. 2024;702:122752. doi:10.1016/j.memsci.2024. 122752

Baker RW. Membrane technology and applications. 4th ed. Hoboken, NJ: Wiley; 2024.

กรมทรัพยากรน้ำบาดาล. มาตรฐานคุณภาพน้ำบาดาลเพื่อการบริโภค. กรุงเทพฯ: กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม; 2545.

World Health Organization (WHO). Guidelines for drinking-water quality. [Internet]. 4th ed. Geneva: World Health Organization; 2017. [cited 2025 Dec 19]. Available from: https://iris.who.int/server/api/core/bitstreams/ 1b7a285e-3635-45dd-a1a9-6068c8fbe173/content

Song Y, Zhang Y, Yang H. A low-cost surface modified battery-used polyethylene membranes for reverse osmosis applications. Mater Res Innov. 2023 Jul;27(5):348–54. doi:10.1080/14328917.2022.2160894

Benladghem Z, Seddiki SML, Dergal F, Mahdad YM, Aissaoui M, Choukchou-Braham N. Biofouling of reverse osmosis membranes: assessment by surface-enhanced Raman spectroscopy and microscopic imaging. Biofouling. 2022 Sep;38(8):852–64. doi:10.1080/08927014.2022.2139610

Alnajdi S, Beni NA, Alsaati AA, Luhar M, Childress AE, Warsinger DM. Practical minimum energy use of seawater reverse osmosis. Joule, 2024 Nov 20;8(11):3088–3105. doi:10.1016/j.joule.2024.08.005

Downloads

Published

01-01-2026

How to Cite

1.
Thongtho S, unchai thitipong. Water Treatment and Removal of Heavy Metals in Groundwater using Integrated Membranes on Drinking Water Quality Indexes: การบำบัดน้ำและกำจัดโลหะหนักในน้ำบาดาลด้วยเมมเบรนรวมตามดัชนีวัดคุณภาพน้ำดื่ม. AdvSciJ [internet]. 2026 Jan. 1 [cited 2026 Jan. 11];26(1):72-91. available from: https://li02.tci-thaijo.org/index.php/adscij/article/view/956

Issue

Section

Research Articles