Study of the effect of doping dysprosium ions in soda lime silicoborate glasses using microwave techniques for white-light-emitting diodes (WLEDs)

Authors

  • Nattaporn Mahingsa Nakhon Pathom Rajabhat University
  • Watcharin Rachniyom Nakhon Pathom Rajabhat University
  • Keerati Kirdsiri Nakhon Pathom Rajabhat University
  • Nattapon Srisittiposakun Nakhon Pathom Rajabhat University

DOI:

https://doi.org/10.53848/ssstj.v12i1.1034

Keywords:

Dysprosium ions, Soda lime borosilicate glass, Luminescence, White-light application, Microwave techniques.

Abstract

Soda lime silicoborate glasses doped with dysprosium ions (Dy³⁺) were synthesized with a glass composition of 55.0B2O3: 25.0SiO2: 10.0Na2O: 10.0CaO: xDy2O3 (where x represents the concentration of Dy2O3, varying from 0.0 to 2.0 mol%). The synthesis was carried out using a microwave technique and the physical, optical and luminescence properties of the obtained glasses were investigated. The results showed that the density and refractive index increased, while the molar volume decreased with higher Dy2O3 concentration. The absorption spectra indicated that these glasses exhibited absorption in the UV-visible and near-infrared light regions. When excited at 388 nm, the glass emitted light at wavelengths of 481, 575, and 663 nm. The emission intensity increased with increasing Dy2O3 concentration up to 0.5 mol%, after which it decreased due to the concentration quenching effect. The CIE 1931 chromaticity diagram confirmed that the glasses emitted light in the white region. Likewise, the glasses exhibited CCT values that fall within the bright white color region, with temperature values ranging from 4309 to 4393 K. The Y/B ratio was calculaed from the luminscence spectraindicating the level of asymmetry in the prepared glasses. The decay time showed a non-exponential behavior, indicating cross -relaxation between Dy3+-Dy3+ ions, and the decay curve was fitted using the IH model S = 10 (quadrupole-quadrupole). The Judd-Ofelt (JO) parameters (W2, W4 and W6) were calculated from the absorption spectra, and the radiative transition probabilities (AR), stimulated emission cross-sections (σ(λp)) and branching ratios (βR) were obtained from the JO parameters. The results confirm the suitability of these glass samples for use in WLEDs and as laser medium.

References

Abdullahi, I., Hashim, S., Sayyed, M. I., & Ghoshal, S. K. (2023). Intense up-conversion luminescence from Dy3+-doped multi-component telluroborate glass matrix: Role of CuO nanoparticles embedment. Heliyon, 9(5), e15906. https://doi.org/10.1016/j.heliyon.2023.e15906

Ahmadi, F., Asgari, A., & Ghoshal, S. K. (2020). Calcium oxide modifier stimulated intense luminescence from Dy3+ doped in sulfophosphate glasses. Optik, 224, 165665. https://doi.org/ 10.1016/j.ijleo.2020.165665

Alhodaib, A., Ibrahim, O., Abd El All, S., & Ezzeldin, F. (2021). Effect of rare-earth ions on the optical and PL properties of novel borosilicate glass developed from agricultural waste. Materials, 14(19), 5607.

https://doi.org/10.3390/ma14195607

Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., & Arifin, R. (2013). Synthesis and characterization of Dy3+ doped zinc–lead-phosphate glass. Optical Materials, 35(5), 1103–1108.

https://doi.org/10.1016/j.optmat.2012.12.024

Fernández-Rodríguez, L., Balda, R., Fernández, J., Durán, A., & Pascual, M. J. (2023). Structure and luminescent properties of Sm/Dy-doped Sr2MgSi2O7 glass–ceramics. International Journal of Applied Glass Science, 14(1), 140–154. https://doi.org/10.1111/ijag.16584

Gökçe, M., & Koçyiğit, D. (2019). Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications. Optical Materials, 89, 568–575. https://doi.org/10.1016/j.optmat.2019.02.004

Hong, Z., Yue, H., Luo, X., Gong, G., Lai, F., Zou, Z., You, W., Wu, S., & Huang, J. (2024). Spectroscopic studies of Dy3+ ions doped gallium silicate glasses for yellow solid-state lasers. Silicon, 16(1), 463–470.

https://doi.org/10.1007/s12633-023-02693-z

Ichoja, A., Hashim, S., Ghoshal, S. K., & Hashim, I. H. (2020). Absorption and luminescence spectral analysis of Dy3+-doped magnesium borate glass. Chinese Journal of Physics, 66, 307–317.

https://doi.org/10.1016/j.cjph.2020.03.029

Insitipong, S., Kaewkhao, J., Ratana, T., & Limsuwan, P. (2011). Optical and structural investigation of bismuth borate glasses doped with Dy3+. Procedia Engineering, 8, 195–199.

https://doi.org/10.1016/j.proeng.2011.03.036

Kaewnuam, E., Wantana, N., Kim, H. J., & Kaewkhao, J. (2017). Development of lithium yttrium borate glass doped with Dy3 + for laser medium, W-LEDs and scintillation materials applications. Journal of Non-Crystalline Solids, 464, 96–103. https://doi.org/10.1016/j.jnoncrysol.2017.03.027

Kashif, I., & Ratep, A. (2022). Judd-Ofelt and luminescence study of dysprosium-doped lithium borosilicate glasses for lasers and w-LEDs. Boletin de La Sociedad Espanola de Ceramica y Vidrio, 61(6), 622–633. https://doi.org/10.1016/j.bsecv.2021.06.001

Khan, I., Rooh, G., Rajaramakrishna, R., Srisittipokakun, N., Kim, H. J., Kaewkhao, J., & Ruangtaweep, Y. (2019). Photoluminescence properties of Dy3+ ion-doped Li2O-PbO-Gd2O3-SiO2 glasses for white light application. Brazilian Journal of Physics, 49(5), 605–614. https://doi.org/10.1007/s13538-019-00695-0

Kıbrıslı, O., Ersundu, A. E., & Çelikbilek Ersundu, M. (2019). Dy 3+ doped tellurite glasses for solid-state lighting: An investigation through physical, thermal, structural and optical spectroscopy studies. Journal of Non-Crystalline Solids, 513, 125–136. https://doi.org/10.1016/j.jnoncrysol.2019.03.020

Krishnaiah, K. V., Kumar, K. U., & Jayasankar, C. K. (2013). Spectroscopic properties of Dy3+-doped oxyfluoride glasses for white light emitting diodes. Materials Express, 3(1), 61–70.

https://doi.org/10.1166/mex.2013.1094

Kumar, D., Rao, S. M., & Singh, S. P. (2017). Structural, optical and thermoluminescence study of Dy3 + ion doped sodium strontium borate glass. Journal of Non-Crystalline Solids, 464, 51–55.

https://doi.org/10.1016/j.jnoncrysol.2017.03.029

Mahmoud, M. M., Folz, D. C., Suchicital, C. T. A., & Clark, D. E. (2012). Crystallization of lithium disilicate glass using microwave processing. Journal of the American Ceramic Society, 95(2), 579–585.

https://doi.org/10.1111/j.1551-2916.2011.04936.x

Mandal, A. K., Agrawal, D., & Sen, R. (2013). Preparation of homogeneous barium borosilicate glass using microwave energy. Journal of Non-Crystalline Solids, 371–372, 41–46.

https://doi.org/10.1016/j.jnoncrysol.2013.04.044

Meejitpaisan, P., Kaewjaeng, S., Ruangthaweep, Y., Sangwarantee, N., & Kaewkhao, J. (2021). White light emission of gadolinium calcium phosphate oxide and oxyfluoride glasses doped with Dy3+. Materials Today: Proceedings, 43, 2574–2587. https://doi.org/10.1016/j.matpr.2020.04.619

Monisha, M., Mazumder, N., Lakshminarayana, G., Mandal, S., & Kamath, S. D. (2021). Energy transfer and luminescence study of Dy3+ doped zinc-aluminoborosilicate glasses for white light emission. Ceramics International, 47(1), 598–610. https://doi.org/10.1016/j.ceramint.2020.08.167

Pawar, P. P., Munishwar, S. R., Gautam, S., & Gedam, R. S. (2017). Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. Journal of Luminescence, 183, 79–88. https://doi.org/10.1016/j.jlumin.2016.11.027

Pawar, P. P., Munishwar, S. R., & Gedam, R. S. (2017). Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sciences, 64, 41–50. https://doi.org/10.1016/j.solidstatesciences.2016.12.009

Poonam, Shivani, Anu, Kumar, A., Sahu, M. K., Rani, P. R., Deopa, N., Punia, R., & Rao, A. S. (2020). Judd-Ofelt parameterization and luminescence characterization of Dy3+ doped oxyfluoride lithium zinc borosilicate glasses for lasers and w-LEDs. Journal of Non-Crystalline Solids, 544, 120187.

https://doi.org/10.1016/j.jnoncrysol.2020.120187

Pugliese, D., Boetti, N. G., Lousteau, J., Ceci-Ginistrelli, E., Bertone, E., Geobaldo, F., & Milanese, D. (2016). Concentration quenching in an Er-doped phosphate glass for compact optical lasers and amplifiers. Journal of Alloys and Compounds, 657, 678–683. https://doi.org/10.1016/j.jallcom.2015.10.126

Rajagukguk, J., Sarumaha, C. S., Chanthima, N., Wantana, N., Kothan, S., Wongdamnern, N., & Kaewkhao, J. (2021). Radio and photo luminescence of Dy3+ doped lithium fluorophosphate scintillating glass. Radiation Physics and Chemistry, 185, 109520. https://doi.org/10.1016/j.radphyschem.2021.109520

Rajagukguk, J., Yuliantini, L., Fitrilawati, Djamal, M., & Kaewkhao, J. (2020). Investigation of Dy3+ ion doped borate glasses and their potential for WLED and laser application. Journal of Engineering and Technological Sciences, 52(6), 891–906. https://doi.org/10.5614/j.eng.technol.sci.2020.52.6.9

Rao, T. V. R., Reddy, R. R., Nazeer Ahammed, Y., Parandamaiah, M., Sooraj Hussain, N., Buddhudu, S., & Purandar, K. (2000). Luminescence properties of Nd3+: TeO2–B2O3–P2O5–Li2O glass. Infrared Physics & Technology, 41(4), 247–258.

Ratep, A., & Kashif, I. (2023). Judd–Ofelt and luminescence properties of dysprosium and terbium doped bismuth-borate glass system. Optical and Quantum Electronics, 55(6), 559.

https://doi.org/10.1007/s11082-023-04725-9

Sarumaha, C. S., Kaewnuam, E., Lertloypanyachai, P., Srisittipokakun, N., Kim, H. J., Intachai, N., Kothan, S., & Kaewkhao, J. (2025). Novel Ce3+/Dy3+ co-doped RHA double-function glasses for UV protection and white light emission capability. Journal of Alloys and Compounds, 1020, 179261.

https://doi.org/10.1016/j.jallcom.2025.179261

Sevast’yanov, R. I. (1994). Use of electric power in glass melting. Glass and Ceramics, 51, 105–108. https://doi.org/10.1007/BF00680071

Shoaib, M., Rajaramakrishna, R., Rooh, G., Chanthima, N., Kim, H. J., Saiyasombat, C., Botta, R., Nuntawong, N., Kothan, S., & Kaewkhao, J. (2020). Structural and luminescence study of Dy3+ doped phosphate glasses for solid state lighting applications. Optical Materials, 109, 110322.

https://doi.org/10.1016/j.optmat.2020.110322

Singkiburin, N., Srisittipokakun, N., Rajaramakrishna, R., Kothan, S., Intachai, N., & Kaewkhao, J. (2023). Investigation of europium oxide (Eu2O3) doped in cobalt boro-silicate glasses from waste glass for photonics material application. Optik, 291, 171146. https://doi.org/10.1016/j.ijleo.2023.171146

Sreedhar, V. B., Ramachari, D., & Jayasankar, C. K. (2013). Optical properties of zincfluorophosphate glasses doped with Dy3+ ions. Physica B: Condensed Matter, 408(1), 158–163.

https://doi.org/10.1016/j.physb.2012.09.047

Srihari, T., & Jayasankar, C. K. (2017). Fluorescence properties and white light generation from Dy3+-doped niobium phosphate glasses. Optical Materials, 69, 87–95. https://doi.org/10.1016/j.optmat.2017.04.001

Sun, Y., Yu, F., Liao, M., Ma, J., Wang, X., He, D., Gao, W., Knight, J., & Hu, L. (2020). Visible emission and energy transfer in Tb3+/Dy3+ co-doped phosphate glasses. Journal of the American Ceramic Society, 103(12), 6847–6859. https://doi.org/10.1111/jace.17391

Venkata Rao, K., Babu, S., Venkataiah, G., & Ratnakaram, Y. C. (2015). Optical spectroscopy of Dy3+ doped borate glasses for luminescence applications. Journal of Molecular Structure, 1094, 274–280.

https://doi.org/10.1016/j.molstruc.2015.04.015

Venugopal, A. R., Rajaramakrishna, R., Rajashekara, K. M., Rajaguguk, J., Ayachit, N. H., Kothan, S., & Kaewkhao, J. (2021). Dy3+ doped B2O3 – Li2O – CaO – CaF2 glass for efficient white light emitting sources. Journal of Non-Crystalline Solids, 554, 120604. https://doi.org/ 10.1016/j.jnoncrysol.2020.120604

Vijayakumar, M., Mahesvaran, K., Patel, D. K., Arunkumar, S., & Marimuthu, K. (2014). Structural and optical properties of Dy3+ doped aluminofluoroborophosphate glasses for white light applications. Optical Materials, 37, 695–705. https://doi.org/10.1016/j.optmat.2014.08.015

Vijayakumar, M., & Marimuthu, K. (2015). Structural and luminescence properties of Dy3+ doped oxyfluoro-borophosphate glasses for lasing materials and white LEDs. Journal of Alloys and Compounds, 629, 230–241. https://doi.org/10.1016/j.jallcom.2014.12.214

Vijayakumar, R., Venkataiah, G., & Marimuthu, K. (2015). Structural and luminescence studies on Dy3+ doped boro-phosphate glasses for white LED’s and laser applications. Journal of Alloys and Compounds, 652, 234–243. https://doi.org/10.1016/j.jallcom.2015.08.219

Wantana, N., Chamlek, O., Chanthima, N., Jayasankar, C. K., Kim, H. J., Djamal, M., & Kaewkhao, J. (2016). Spectroscopic properties and Judd-Ofelt analysis of Dy3+ in lithium lanthanum borate glass for laser medium application. Key Engineering Materials, 675–676, 389–392.

Zaman, F., Khan, I., Khattak, S. A., Kaewkhao, J., Ataullah, Shoaib, M., Shah, A., & Rooh, G. (2019). Investigation of luminescence and lasing properties of Dy3+-doped-borate glasses for white light generation. Solid State Sciences, 90, 68–75. https://doi.org/10.1016/j.solidstatesciences.2019.02.006

Downloads

Published

2025-03-13

How to Cite

Mahingsa, N., Rachniyom, W. ., Kirdsiri, K. ., & Srisittiposakun, N. . (2025). Study of the effect of doping dysprosium ions in soda lime silicoborate glasses using microwave techniques for white-light-emitting diodes (WLEDs). Suan Sunandha Science and Technology Journal, 12(1), 32–43. https://doi.org/10.53848/ssstj.v12i1.1034

Issue

Section

Research Articles