A New Mixture Lomax Distribution and Its Application


  • Chookait Pudprommarat Faculty of Science and Technology, Suan Sunandha Rajabhat University U-thong Nok Road, Dusit, Bangkok 10300, Thailand
  • Kemmawadee Preedalikit School of Science, University of Phayao Tambon Maeka, Muang, Phayao 56000, Thailand


Mixture Lomax distribution, Length biased, Lomax distribution


In this paper, we propose a new mixture Lomax distribution for positive continuous random variable. The new mixture Lomax distribution has two component distributions which are Lomax distribution and length biased Lomax distribution. We have derived and studies in probability properties which include the probability density function, cumulative distribution function, survival function, hazard function, moment about origin, mean, variance, coefficient of skewness and coefficient of kurtosis. Next, we study the estimation parameter of new mixture Lomax distribution by using maximum likelihood estimation. Finally, application of new mixture
Lomax distribution is illustrated by real data set which is analyzed using Akaike’s information criterion (AIC). It is shown that the proposed distribution fits much better than some other existing Lomax distributions.


Afaq A., Ahmad, S. P., & Ahmed, A. (2016). Length-biased weighted Lomax distribution: statistical properties and application. Pakistan Journal of Statistics and Operation Research, 12(2), 245-255.

Al-Zahrani, B., & Sagor, H. (2014). The Poisson-Lomax distribution. Revista Colombiana de Estadística, 37(1), 223-243.

Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull distribution: A generalization of the Weibull probability distribution. European Journal of Pure and Applied Mathematics, 4(2), 89-102.

Ashour, S., & Eltehiwy, M. (2013). Transmuted exponentiated Lomax distribution. Australian Journal of Basic and Applied Sciences, 7(7), 658-667.

Balakrishnan, N., Leiva, V., Sanhueza, A., & Cabrera, E. (2009). Mixture inverse Gaussian distributions and its transformations, moments and applications. Statistics, 43(1), 91-104.

Bowonrattanaset, P. (2011). Point estimation for the crack lifetime distribution (Doctoral dissertation).

Thammasat University, Thailand.

Chen, J., Addie, R. G., Zukerman., M., & Neame, T. D. (2015). Performance evaluation of a queue fed by a Poisson Lomax Burst Process. IEEE Communications Letters, 19(3), 367-370.

Cordeiro, G., Ortega, E., & Popović, B. (2013). The gamma-Lomax distribution. Journal of Statistical Computation and Simulation, 85(2), 305-319.

Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its application. Mathematics and Computers in Simulation, 78(4), 493-506.

Gupta, R. C., & Akman, H. O. (1995). On the reliability studies of a weighted inverse Gaussian model. Journal of Statistical Planning and Inference, 48(1), 69-83.

Jorgensen, B., Seshadri, V., & Whitmore, G. A. (1991). On the mixture of the inverse Gaussian distribution with its complementary reciprocal. Scandinavian Journal of Statistics, 18(1), 77-89.

Lee, E. T., & Wang, J. W. (2003). Statistical methods for survival data analysis. Oklahoma: Wiley-Interscience.

Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49, 847-852.

Rady, E. A., Hassanein, W. A., & Elhaddad, T. A. (2016). The power Lomax distribution with an application to bladder cancer data. Springerplus, 5(1), 1838. doi:10.1186/s40064-016-3464-y

Saengthong, P., & Bodhisuwan, W. (2014). A new two-parameter crack distribution. Journal of Applied Sciences, 14(8), 758-766.

Subba Rao, R., Naga Durgamamba, A., & Kantam, R. R. L. (2014). Acceptance sampling plans: Size biased Lomax model. Universal Journal of Applied Mathematics, 2(4), 176-183




How to Cite

Pudprommarat, C. ., & Preedalikit, K. . (2022). A New Mixture Lomax Distribution and Its Application. Suan Sunandha Science and Technology Journal, 5(1), 12–19. Retrieved from https://li02.tci-thaijo.org/index.php/ssstj/article/view/329



Research Articles