DFT Investigation of Toluene Adsorption on Silicon Carbide Nanosheet Doping with Transition Metal for Storage and Sensor Application
Keywords:
DFT, Silicon carbide nanosheet, Toluene, Transition metals, VOCAbstract
Nowadays, the emission of volatile organic compounds (VOC) is giving rise to several health hazards and damage to the environment. Consequently, the nanomaterial development is considerably important for VOC adsorption and sensing. In this work, the adsorptions of toluene on silicon carbide nanosheets doping with transition metal atoms (TM-doped SiCNS) were investigated using the density functional theory method (DFT). The B3LYP/LanL2DZ was employed in all calculations for the geometric, energetic, and electronic properties. In addition, the doping of TM atom at different sites will have different effects on the adsorption behavior of the systems. Calculation results reveal that the adsorption distances and adsorption energies of TM doping on SiCNSs are suitable for toluene adsorption greater than pristine SiCNS. According to the changes of electronic properties of TM-doped SiCNS show highly sensitive to toluene molecule. The results indicate that the introducing of TM doping on SiCNS significantly improve the sensitivity toward toluene molecule. Therefore, the results of our work may be useful in developing and designing new types of storage and sensor materials.
References
Ansari, R., Rouhi, S., Mirnezhad, M., & Aryayi, M. (2013). Stability characteristics of single-layered silicon carbide nanosheets under uniaxial
compression. Physica E: Low-Dimensional Systems and Nanostructures, 53, 22-28. doi:10.1016/j.physe.2013.04.014
Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38 (1988) 3098-3100.
Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.
Bezi Javan, M., Houshang Shirdel-Havar, A., Soltani, A., & Pourarian, F. (2016). Adsorption and dissociation of H2 on Pd doped graphenelike
SiC sheet. International Journal of Hydrogen Energy, 41(48), 22886-22898. doi:10.1016/j.ijhydene.2016.09.081
Chabi, S., Chang, H., Xia, Y., & Zhu, Y. (2016). From graphene to silicon carbide: ultrathin silicon carbide flakes. Nanotechnology, 27(7),
doi:10.1088/0957-4484/27/7/075602
Chiang, Y.-C., Chiang, P.-C., & Huang, C.-P. (2001). Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon,
(4), 523-534.
Delavari, N., & Jafari, M. (2018). Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study. Solid State Communications, 275, 1-7. doi:10.1016/j.ssc.2018.03.004
Farmanzadeh, D., & Ardehjani, N. A. (2018). Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide
nanosheets: A computational study. Applied Surface Science, 462, 685-692. doi: 10.1016/j.apsusc.2018.08.150
Flükiger P., Lüthi, H.P., & Portmann, S., MOLEKEL 4.3, Swiss center for scientific computing. Manno, Switzerland, 2000.
Frisch, M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., ..., Pople J.A. GAUSSIAN 09, Revision A.02, Gaussian Inc,
WallingfordCT, 2009.
Goudarziafshar, H., Abdolmaleki, M., Moosavizare, A. R., & Soleymanabadi, H. (2018). Hydrogen storage by Ni-doped silicon carbide
nanocage: A theoretical study. Physica E: Low-Dimensional Systems and Nanostructures, 101,78-84.doi: 10.1016/j.physe.2018.03.001
Hay P.J., Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals.
J. Chem. Phys. 82(1985) 299-310.
Hay, P.J., Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem.
Phys. 82 (1985) 270-283.
Kim, K.-H., Szulejko, J. E., Raza, N., Kumar, V., Vikrant, K., Tsang, D. C. W., … Khan, A. (2019). Identifying the best materials for the removal of airborne toluene based on performance metrics - A critical review. Journal of Cleaner Production, 241, 118408. doi: 10.1016/j.jclepro.2019.
Kunaseth, M., Poldorn, P., Junkeaw, A., Meeprasert, J., Rungnim, C., Namuangruk, S., … Jungsuttiwong, S. (2017). A DFT study of volatile organic compounds adsorption on transition metal deposited graphene. Applied Surface Science, 396, 1712-1718. doi: 10.1016/j.apsusc.2016.11.238
Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B
(1988) 785-789. doi:10.1103/physrevb.37.785
Mandeep, Sharma, L., & Kakkar, R. (2018). DFT study on the adsorption of p-nitrophenol over vacancy and Pt-doped graphene sheets.
Computational and Theoretical Chemistry, 1142, 88-96. doi: 10.1016/j.comptc.2018.08.020
O’boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). cclib: A library for packageindependent computational chemistry
algorithms. Journal of Computational Chemistry, 29(5), 839-845. doi: 10.1002/jcc.20823
Su, Y., Ao, Z., Ji, Y., Li, G., & An, T. (2018). Adsorption mechanisms of different volatile organic compounds onto pristine C2N and Aldoped
C2N monolayer: A DFT investigation. Applied Surface Science, 450, 484-491. doi:10.1016/j.apsusc.2018.04.157
Sun, L., & Hu, J. (2018). Adsorption of O2 on the M doped (M=Fe, Co, Al, Cu, and Zn) SiC sheets: DFT study. Computational Condensed Matter,
, doi:10.1016/j.cocom.2018.e00323
Tabtimsai, C., Kansawai P., Phoson P., Pooboontong P., & Wanno B., Adsorption of CO2 on Ga- and B-doped silicon carbide nanosheets: A theoretical study. The 5th International Conference on Sciences and Social Sciences 2015 (ICSSS 2015): Research and Innovation for Community and Regional Development, Rajabhat Maha Sarakham University, Thailand, September 17-18, 2015.
Tabtimsai, C., Ruangpornvisuti, V., Tontapha, S., & Wanno, B. (2018). A DFT investigation on group 8B transition metal-doped silicon carbide
nanotubes for hydrogen storage application. Applied Surface Science, 439, 494-505.
Wadt, W.R., Hay, P.J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi,
J. Chem. Phys. 82 (1985) 284-298. doi: 10.1063/1.448799
Wang, N., Tian, Y., Zhao, J., & Jin, P. (2016). CO oxidation catalyzed by silicon carbide (SiC) monolayer: A theoretical study. Journal of
Molecular Graphics and Modelling, 66, 196-200. doi: 10.1016/j.jmgm.2016.04.009
Yi, F.-Y., Lin, X.-D., Chen, S.-X., & Wei, X.-Q. (2008). Adsorption of VOC on modified activated carbon fiber. Journal of Porous
Materials, 16(5), 521-526.
Yu, L., Wang, L., Xu, W., Chen, L., Fu, M., Wu, J., & Ye, D. (2018). Adsorption of VOCs on reduced graphene oxide. Journal of
Environmental Sciences, 67, 171-178.
Zhou, K., Ma, W., Zeng, Z., Ma, X., Xu, X., Guo, Y., … Li, L. (2019). Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chemical Engineering Journal, 372, 1122-1133. doi:10.1016/j.cej.2019.04.218