The Preparation of Hybrid Material of Cobalt Complex into Mesoporous Silica from the Rice Husk


  • Pornpan Tana Department of chemistry, faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
  • Netchanok Jansawang Department of chemistry, faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand
  • Patcharaporn Pimchan Department of chemistry, faculty of Science and Technology, Rajabhat Maha Sarakham University, Maha Sarakham 44000, Thailand


Hybrid material, Mesoporous silica, Bis(8-hydroxyquinoline)cobalt(II), Rice husk


A luminescence hybrid material, Bis(8-hydroxyquinoline)cobalt(II) (Co(8hq) 2), was incorporated into the mesoporous silica. To study the preparation of mesoporous silica from rice husk and the development of fluorescence efficiency. The mesoporous silica was prepared by swelling-shrinking mechanism which used the sodium silicate from rice husk as the precursor. The hybrid materials were prepared by solid-state reaction at room temperature with two different routes; the first one was the hybrid material processes via the in situ formation of cobalt(II)chloride hexahydrate (CoCl26H 2O) as well as 8hq into the mesoporous silica (MCM) mixed ground
(MCM_Co(8hq) 2) and the another one was step by step ground of the mesoporous silica, cobalt(II)chloride hexahydrate and 8hq (MCMCo(II)_8hq). The hybrid materials were characterized by SEM, XRD, FT-IR, AAS, as well as PL. The FT-IR spectra showed the 8hq characteristic at 820, 786, 784, and 747 cm-1 that all of the FT- IR spectra shifted to higher frequencies of free 8hq (815, 778, and 739 cm-1 ), confirming the coordination between cobalt(II) cation and 8-hydroxyquinoline. The excellent photoluminescence of MCM_Co(8hq) 2 revealed at 484 nm and MCMCo(II)_8hq demonstrated blue-shifted peak at 474 nm in this comparison, indicating that the formation of different nanostructures and/or packing of bis (8-hydroxyquinoline)cobalt(II) were formed into the mesoporous silica.


Badiei, A., & Goldooz, H. (2012). A Simple Method for Preparation of Fluorescent Nanostructure Silica with Hexagonal Array. International

Journal of Modern Physics: Conference Series, 05, 151-159. doi:10.1142/S2010194512001961

Badiei, A., Goldooz, H., Ziarani, G. M., & Abbasi, A. (2011). One pot synthesis of functionalized SBA-15 by using an 8-hydroxyquinoline-5-

sulfonamide-modified organosilane as precursor. Journal of Colloid and Interface Science, 357(1), 63-69.doi:10.1016/j.jcis.2011.01.049

Bakar, R. A., Yahya, R., & Gan, S. N. (2016).Production of High Purity Amorphous Silica from Rice Husk. Procedia Chemistry, 19, 189-


Barczak, M. (2018). Functionalization of mesoporous silica surface with carboxylic groups by Meldrum’s acid and its application

for sorption of proteins. Journal of Porous Materials, 26(1), 291-300.doi:10.1007/s10934-018-0655-7

Behzad, S. K., Najafi, E., Amini, M. M., Janghouri, M., Mohajerani, E., & Ng, S. W. (2014). Yellow- green electroluminescence of

samarium complexes of 8-hydroxyquinoline.Journal of Luminescence, 156, 219-228.doi:10.1016/j.jlumin.2014.08.013

Cong, V. T., Gaus, K., Tilley, R. D., & Gooding, J.J. (2018). Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent

progress and perspectives. Expert Opinion on Drug, 15(9), 881-892. doi:10.1080/17425247.2018.1517748

He, X., Yu, C., Lin, J., Zhang, X., Li, Q., Fang, Y.,...Tang, C. (2018). Porous boron nitride/rare earth complex hybrids with multicolor tunable

photoluminescence. Journal of Alloys and Compounds, 768, 15-21.doi:10.1016/j.jallcom.2018.07.160

Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-

Ultrasonics Sonochemistry, 19(5), 1087-1093. doi:10.1016/j.ultsonch.2012.01.012

Kudo, T., Ito, T., & Kim, S.-Y. (2017). Adsorption Behavior of Sr(II) from High-level Liquid Waste using Crown Ether with Ionic Liquid

Impregnated Silica Adsorbent. Energy Procedia, 131, 189-194.doi:10.1016/j.egypro.2017.09.426

La-Salvia, N., Lovón-Quintana, J. J., Lovón, A. S.P., & Valença, G. P. (2017). Influence of Aluminum Addition in the Framework of

MCM-41 Mesoporous Molecular Sieve Synthesized by Non-Hydrothermal Method in an Alkali-Free System. Materials Research,

(6), 1461- 1469. doi:10.1590/1980-5373-mr-2016-1064

Li, B., Li, H., Zhang, X., Fan, P., Liu, L., Li, B., ...Zhao, B. (2018). Calcined sodium silicate as an efficient and benign heterogeneous catalyst for

the transesterification of natural lecithin to L- α-glycerophosphocholine. Green Processing and Synthesis, 8, 78–84. doi:10.1515/gps-


Li, F., Li, H., & Cui, T. (2017). One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints.

Optical Materials, 73, 459-465.doi:10.1016/j.optmat.2017.09.004

Li, H., & Li, Y. (2009). Synthesis of highly luminescent cobalt(II)-bis(8-hydroxyquinoline)nanosheets as isomeric aromatic amine probes. Nanoscale, 1(1), 128-132. doi:10.1039/B9NR00019D

Li, H., & Qu, F. (2007). Selective inclusion of polycyclic aromatic hydrocarbons (PAHs) on calixarene coated silica nanospheres englobed

with CdTe nanocrystals. Journal of Materials Chemistry, 17(33), 3536-3544. Doi:10.1039/b705743a

Li, H., Fu, Y., Zhang, L., Liu, X., Qu, Y., Xu, S., & Lü, C. (2012). In situ route to novel fluorescent mesoporous silica nanoparticles with 8-

hydroxyquinolinate zinc complexes and their biomedical applications. Microporous and Mesoporous Materials, 151, 293–302.


Li, K.-M., Jiang, J.-G., Tian, S.-C., Chen, X.-J., & Yan, F. (2014). Influence of Silica Types on Synthesis and Performance of Amine-Silica

Hybrid Materials Used for CO 2 Capture. Physical Chemistry C, 118(5), 2454-2462.doi:10.1021/jp408354r

Liu, Y., Wang, Z., Zeng, H., Chen, C., Liu, J., Sun,L., & Wang, W. (2015). Photoluminescent mesoporous carbon-doped silica from rice

husks. Materials Letters, 142, 280-282.doi:10.1016/j.matlet.2014.12.034

Ma, J. S., Lin, L. Y., & Chen Y. S. (2019). Facile solid-state synthesis for producing molybdenum and tungsten co-doped monoclinic BiVO 4 as the photocatalyst for photoelectrochemical water oxidation.International Journal of Hydrogen Energy,44(16), 7905-7914.


Maučec, D., Šuligoj, A., Ristić, A., Dražić, G.,Pintar, A., & Tušar, N. N. (2018). Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310, 32-41.doi:10.1016/j.cattod.2017.05.061

Nakamura, K. J., Ide, Y., & Ogawa, M. (2011).Molecular recognitive photocatalytic decomposition on mesoporous silica coated TiO 2 particle. Materials Letters, 65(1),24-26. doi:10.1016/j.matlet.2010.09.043

Ogata Y.H. (2018) Characterization of Porous Silicon by Infrared Spectroscopy. In: Canham L. (eds) Handbook of Porous Silicon. Springer,


Patel, V. K., Saurav, J. R., Gangopadhyay, K.,Gangopadhyay, S., & Bhattacharya, S. (2015).Combustion characterization and modeling of

novel nanoenergetic composites of Co 3O 4/nAl.RSC Advances, 5(28), 21471-21479. doi:10.1039/c4ra14751k

Patriarca, M., Daier, V., Camí, G., Pellegri, N.,Rivière, E., Hureau, C., & Signorella, S.(2019). Biomimetic Cu, Zn and Cu2 complexes inserted in mesoporous silica as catalysts for superoxide dismutation.Microporous and Mesoporous Materials, 279,133-141.


Pimchan, P., Khaorapapong, N., Sohmiya, M., & Ogawa, M. (2014). In situ complexation of 8-hydroxyquinoline and 4,4′-bipyridine with

zinc(II) in the interlayer space of montmorillonite. Applied Clay Science,95, 310-316. doi:10.1016/j.clay.2014.04.033

Pimprom, S., Sriboonkham, K., Dittanet, P.,Föttinger, K., Rupprechter, G., & Kongkachuichay, P. (2015). Synthesis of copper-nickel/SBA-15 from rice husk ash catalyst for dimethyl carbonate production from methanol and carbon dioxide. Journal of Industrial and Engineering Chemistry, 31,156-166. doi:10.1016/j.jiec.2015.06.019

Puratane, C. & Amnuaypanich, S. (2018).Mesoporous silica particles (MSPs) prepared by diol-functionalized natural rubber (ENR50-

diol) and cationic surfactant (CTAB) dual templates, KKU Sci. J. 46(3), 496-505.

Rahman, A. Z. M. S. (2016). Solid State Luminescent Materials: Applications.Reference Module in Materials Science and Materials Engineering. doi:10.1016/b978-0-12-803581-8.04078-9

Roschat, W., Siritanon, T., Yoosuk, B., & Promarak,V. (2016). Rice husk-derived sodium silicate as a highly efficient and low-cost basic

heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 119, 453-462. doi:10.1016/j.enconman.2016.04.071

Sábio, R. M., Gressier, M., Caiut, J. M. A., Menu, M.-J., & Ribeiro, S. J. L. (2016). Luminescent multifunctional hybrids obtained by grafting of

ruthenium complexes on mesoporous silica.Materials Letters, 174, 1-5.doi:10.1016/j.matlet.2016.03.058

Singh, D., Nishal, V., Bhagwan, S., Saini, R. K., & Singh, I. (2018). Electroluminescent materials: Metal complexes of 8-hydroxyquinoline-A

review. Materials & Design, 156, 215-228.doi:10.1016/j.matdes.2018.06.036

Sohmiya, M., & Ogawa, M. (2011). Controlled spatial distribution of tris(2,2′-bipyridine)ruthenium cation ([Ru(bpy) 3]2+ ) in

aluminum containing mesoporous silicas.Microporous and Mesoporous Materials,142(1), 363-370.doi:10.1016/j.micromeso.2010.12.023

Sohmiya, M., Saito, K., & Ogawa, M. (2015). Host-guest chemistry of mesoporous silicas: precise design of location, density and orientation

of molecular guests in mesopores. Science and Technology of Advanced Materials, 16(5),1-17. doi:10.1088/1468-6996/16/5/054201

Świderski, G., Kalinowska, M., Wilczewska, A. Z.,Malejko, J., & Lewandowski, W. (2018).Lanthanide complexes with pyridinecarboxylic acids-Spectroscopic and thermal studies. Polyhedron, 150, 97-109. doi:10.1016/j.poly.2018.04.045

Tsuboi, T., Nakai, Y., & Torii, Y. (2012).Photoluminescence of bis(8-hydroxyquinoline) zinc (Znq 2) and magnesium (Mgq 2). Open Physics, 10(2).


Vibulyaseak, K., Deepracha, S., & Ogawa, M.(2018). Immobilization of titanium dioxide in mesoporous silicas; structural design and

characterization. Solid State Chemistry, 270,162-172. doi:10.1016/j.jssc.2018.09.043

Yang, J., Chen, J., & Song, J. (2009). Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and

Raman spectra. Vibrational Spectroscopy,50(2), 178-184.doi:10.1016/j.vibspec.2008.09.016

Yang, P., Quan, Z., Lu, L., Huang, S., Lin, J., & Fu,H. (2007). MCM-41 functionalized with YVO 4:Eu 3+ : a novel drug delivery system.

Nanotechnology, 18(23), 1-10.doi:10.1088/0957-4484/18/23/235703

Zhang, X., Tang, J., Li, H., Wang, Y., Wang, X., Wang, Y., Huang, L., & Belfiore, L. A. (2018). Red light emitting nano-PVP fibers that hybrid

with Ag@SiO 2@Eu(tta) 3phen-NPs by electrostatic spinning method. Optical Materials, 78, 220-225.doi:10.1016/j.optmat.2018.02.014

Zhao, H., Zhang, T., Qi, R., Dai, J., Liu, S., Fei, T.,& Lu, G. (2017). Organic-inorganic hybrid materials based on mesoporous silica

derivatives for humidity sensing. Sensors and Actuators B: Chemical, 248, 803-811. doi:10.1016/j.snb.2016.11.104




How to Cite

Tana, P. ., Jansawang, N. ., & Pimchan, . P. . (2022). The Preparation of Hybrid Material of Cobalt Complex into Mesoporous Silica from the Rice Husk. Suan Sunandha Science and Technology Journal, 7(2), 7–14. Retrieved from



Research Articles