The Preparation of Hybrid Material of Cobalt Complex into Mesoporous Silica from the Rice Husk
Keywords:
Hybrid material, Mesoporous silica, Bis(8-hydroxyquinoline)cobalt(II), Rice huskAbstract
A luminescence hybrid material, Bis(8-hydroxyquinoline)cobalt(II) (Co(8hq) 2), was incorporated into the mesoporous silica. To study the preparation of mesoporous silica from rice husk and the development of fluorescence efficiency. The mesoporous silica was prepared by swelling-shrinking mechanism which used the sodium silicate from rice husk as the precursor. The hybrid materials were prepared by solid-state reaction at room temperature with two different routes; the first one was the hybrid material processes via the in situ formation of cobalt(II)chloride hexahydrate (CoCl26H 2O) as well as 8hq into the mesoporous silica (MCM) mixed ground
(MCM_Co(8hq) 2) and the another one was step by step ground of the mesoporous silica, cobalt(II)chloride hexahydrate and 8hq (MCMCo(II)_8hq). The hybrid materials were characterized by SEM, XRD, FT-IR, AAS, as well as PL. The FT-IR spectra showed the 8hq characteristic at 820, 786, 784, and 747 cm-1 that all of the FT- IR spectra shifted to higher frequencies of free 8hq (815, 778, and 739 cm-1 ), confirming the coordination between cobalt(II) cation and 8-hydroxyquinoline. The excellent photoluminescence of MCM_Co(8hq) 2 revealed at 484 nm and MCMCo(II)_8hq demonstrated blue-shifted peak at 474 nm in this comparison, indicating that the formation of different nanostructures and/or packing of bis (8-hydroxyquinoline)cobalt(II) were formed into the mesoporous silica.
References
Badiei, A., & Goldooz, H. (2012). A Simple Method for Preparation of Fluorescent Nanostructure Silica with Hexagonal Array. International
Journal of Modern Physics: Conference Series, 05, 151-159. doi:10.1142/S2010194512001961
Badiei, A., Goldooz, H., Ziarani, G. M., & Abbasi, A. (2011). One pot synthesis of functionalized SBA-15 by using an 8-hydroxyquinoline-5-
sulfonamide-modified organosilane as precursor. Journal of Colloid and Interface Science, 357(1), 63-69.doi:10.1016/j.jcis.2011.01.049
Bakar, R. A., Yahya, R., & Gan, S. N. (2016).Production of High Purity Amorphous Silica from Rice Husk. Procedia Chemistry, 19, 189-
doi:10.1016/j.proche.2016.03.092
Barczak, M. (2018). Functionalization of mesoporous silica surface with carboxylic groups by Meldrum’s acid and its application
for sorption of proteins. Journal of Porous Materials, 26(1), 291-300.doi:10.1007/s10934-018-0655-7
Behzad, S. K., Najafi, E., Amini, M. M., Janghouri, M., Mohajerani, E., & Ng, S. W. (2014). Yellow- green electroluminescence of
samarium complexes of 8-hydroxyquinoline.Journal of Luminescence, 156, 219-228.doi:10.1016/j.jlumin.2014.08.013
Cong, V. T., Gaus, K., Tilley, R. D., & Gooding, J.J. (2018). Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent
progress and perspectives. Expert Opinion on Drug, 15(9), 881-892. doi:10.1080/17425247.2018.1517748
He, X., Yu, C., Lin, J., Zhang, X., Li, Q., Fang, Y.,...Tang, C. (2018). Porous boron nitride/rare earth complex hybrids with multicolor tunable
photoluminescence. Journal of Alloys and Compounds, 768, 15-21.doi:10.1016/j.jallcom.2018.07.160
Jabariyan, S., & Zanjanchi, M. A. (2012). A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM-
Ultrasonics Sonochemistry, 19(5), 1087-1093. doi:10.1016/j.ultsonch.2012.01.012
Kudo, T., Ito, T., & Kim, S.-Y. (2017). Adsorption Behavior of Sr(II) from High-level Liquid Waste using Crown Ether with Ionic Liquid
Impregnated Silica Adsorbent. Energy Procedia, 131, 189-194.doi:10.1016/j.egypro.2017.09.426
La-Salvia, N., Lovón-Quintana, J. J., Lovón, A. S.P., & Valença, G. P. (2017). Influence of Aluminum Addition in the Framework of
MCM-41 Mesoporous Molecular Sieve Synthesized by Non-Hydrothermal Method in an Alkali-Free System. Materials Research,
(6), 1461- 1469. doi:10.1590/1980-5373-mr-2016-1064
Li, B., Li, H., Zhang, X., Fan, P., Liu, L., Li, B., ...Zhao, B. (2018). Calcined sodium silicate as an efficient and benign heterogeneous catalyst for
the transesterification of natural lecithin to L- α-glycerophosphocholine. Green Processing and Synthesis, 8, 78–84. doi:10.1515/gps-
-0190
Li, F., Li, H., & Cui, T. (2017). One-step synthesis of solid state luminescent carbon-based silica nanohybrids for imaging of latent fingerprints.
Optical Materials, 73, 459-465.doi:10.1016/j.optmat.2017.09.004
Li, H., & Li, Y. (2009). Synthesis of highly luminescent cobalt(II)-bis(8-hydroxyquinoline)nanosheets as isomeric aromatic amine probes. Nanoscale, 1(1), 128-132. doi:10.1039/B9NR00019D
Li, H., & Qu, F. (2007). Selective inclusion of polycyclic aromatic hydrocarbons (PAHs) on calixarene coated silica nanospheres englobed
with CdTe nanocrystals. Journal of Materials Chemistry, 17(33), 3536-3544. Doi:10.1039/b705743a
Li, H., Fu, Y., Zhang, L., Liu, X., Qu, Y., Xu, S., & Lü, C. (2012). In situ route to novel fluorescent mesoporous silica nanoparticles with 8-
hydroxyquinolinate zinc complexes and their biomedical applications. Microporous and Mesoporous Materials, 151, 293–302.
doi:10.1016/j.micromeso.2011.10.021
Li, K.-M., Jiang, J.-G., Tian, S.-C., Chen, X.-J., & Yan, F. (2014). Influence of Silica Types on Synthesis and Performance of Amine-Silica
Hybrid Materials Used for CO 2 Capture. Physical Chemistry C, 118(5), 2454-2462.doi:10.1021/jp408354r
Liu, Y., Wang, Z., Zeng, H., Chen, C., Liu, J., Sun,L., & Wang, W. (2015). Photoluminescent mesoporous carbon-doped silica from rice
husks. Materials Letters, 142, 280-282.doi:10.1016/j.matlet.2014.12.034
Ma, J. S., Lin, L. Y., & Chen Y. S. (2019). Facile solid-state synthesis for producing molybdenum and tungsten co-doped monoclinic BiVO 4 as the photocatalyst for photoelectrochemical water oxidation.International Journal of Hydrogen Energy,44(16), 7905-7914.
doi:10.1016/j.ijhydene.2019.02.077
Maučec, D., Šuligoj, A., Ristić, A., Dražić, G.,Pintar, A., & Tušar, N. N. (2018). Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310, 32-41.doi:10.1016/j.cattod.2017.05.061
Nakamura, K. J., Ide, Y., & Ogawa, M. (2011).Molecular recognitive photocatalytic decomposition on mesoporous silica coated TiO 2 particle. Materials Letters, 65(1),24-26. doi:10.1016/j.matlet.2010.09.043
Ogata Y.H. (2018) Characterization of Porous Silicon by Infrared Spectroscopy. In: Canham L. (eds) Handbook of Porous Silicon. Springer,
Cham.
Patel, V. K., Saurav, J. R., Gangopadhyay, K.,Gangopadhyay, S., & Bhattacharya, S. (2015).Combustion characterization and modeling of
novel nanoenergetic composites of Co 3O 4/nAl.RSC Advances, 5(28), 21471-21479. doi:10.1039/c4ra14751k
Patriarca, M., Daier, V., Camí, G., Pellegri, N.,Rivière, E., Hureau, C., & Signorella, S.(2019). Biomimetic Cu, Zn and Cu2 complexes inserted in mesoporous silica as catalysts for superoxide dismutation.Microporous and Mesoporous Materials, 279,133-141.
doi:10.1016/j.micromeso.2018.12.027
Pimchan, P., Khaorapapong, N., Sohmiya, M., & Ogawa, M. (2014). In situ complexation of 8-hydroxyquinoline and 4,4′-bipyridine with
zinc(II) in the interlayer space of montmorillonite. Applied Clay Science,95, 310-316. doi:10.1016/j.clay.2014.04.033
Pimprom, S., Sriboonkham, K., Dittanet, P.,Föttinger, K., Rupprechter, G., & Kongkachuichay, P. (2015). Synthesis of copper-nickel/SBA-15 from rice husk ash catalyst for dimethyl carbonate production from methanol and carbon dioxide. Journal of Industrial and Engineering Chemistry, 31,156-166. doi:10.1016/j.jiec.2015.06.019
Puratane, C. & Amnuaypanich, S. (2018).Mesoporous silica particles (MSPs) prepared by diol-functionalized natural rubber (ENR50-
diol) and cationic surfactant (CTAB) dual templates, KKU Sci. J. 46(3), 496-505.
Rahman, A. Z. M. S. (2016). Solid State Luminescent Materials: Applications.Reference Module in Materials Science and Materials Engineering. doi:10.1016/b978-0-12-803581-8.04078-9
Roschat, W., Siritanon, T., Yoosuk, B., & Promarak,V. (2016). Rice husk-derived sodium silicate as a highly efficient and low-cost basic
heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 119, 453-462. doi:10.1016/j.enconman.2016.04.071
Sábio, R. M., Gressier, M., Caiut, J. M. A., Menu, M.-J., & Ribeiro, S. J. L. (2016). Luminescent multifunctional hybrids obtained by grafting of
ruthenium complexes on mesoporous silica.Materials Letters, 174, 1-5.doi:10.1016/j.matlet.2016.03.058
Singh, D., Nishal, V., Bhagwan, S., Saini, R. K., & Singh, I. (2018). Electroluminescent materials: Metal complexes of 8-hydroxyquinoline-A
review. Materials & Design, 156, 215-228.doi:10.1016/j.matdes.2018.06.036
Sohmiya, M., & Ogawa, M. (2011). Controlled spatial distribution of tris(2,2′-bipyridine)ruthenium cation ([Ru(bpy) 3]2+ ) in
aluminum containing mesoporous silicas.Microporous and Mesoporous Materials,142(1), 363-370.doi:10.1016/j.micromeso.2010.12.023
Sohmiya, M., Saito, K., & Ogawa, M. (2015). Host-guest chemistry of mesoporous silicas: precise design of location, density and orientation
of molecular guests in mesopores. Science and Technology of Advanced Materials, 16(5),1-17. doi:10.1088/1468-6996/16/5/054201
Świderski, G., Kalinowska, M., Wilczewska, A. Z.,Malejko, J., & Lewandowski, W. (2018).Lanthanide complexes with pyridinecarboxylic acids-Spectroscopic and thermal studies. Polyhedron, 150, 97-109. doi:10.1016/j.poly.2018.04.045
Tsuboi, T., Nakai, Y., & Torii, Y. (2012).Photoluminescence of bis(8-hydroxyquinoline) zinc (Znq 2) and magnesium (Mgq 2). Open Physics, 10(2).
doi:10.2478/s11534-011-0090-8
Vibulyaseak, K., Deepracha, S., & Ogawa, M.(2018). Immobilization of titanium dioxide in mesoporous silicas; structural design and
characterization. Solid State Chemistry, 270,162-172. doi:10.1016/j.jssc.2018.09.043
Yang, J., Chen, J., & Song, J. (2009). Studies of the surface wettability and hydrothermal stability of methyl-modified silica films by FT-IR and
Raman spectra. Vibrational Spectroscopy,50(2), 178-184.doi:10.1016/j.vibspec.2008.09.016
Yang, P., Quan, Z., Lu, L., Huang, S., Lin, J., & Fu,H. (2007). MCM-41 functionalized with YVO 4:Eu 3+ : a novel drug delivery system.
Nanotechnology, 18(23), 1-10.doi:10.1088/0957-4484/18/23/235703
Zhang, X., Tang, J., Li, H., Wang, Y., Wang, X., Wang, Y., Huang, L., & Belfiore, L. A. (2018). Red light emitting nano-PVP fibers that hybrid
with Ag@SiO 2@Eu(tta) 3phen-NPs by electrostatic spinning method. Optical Materials, 78, 220-225.doi:10.1016/j.optmat.2018.02.014
Zhao, H., Zhang, T., Qi, R., Dai, J., Liu, S., Fei, T.,& Lu, G. (2017). Organic-inorganic hybrid materials based on mesoporous silica
derivatives for humidity sensing. Sensors and Actuators B: Chemical, 248, 803-811. doi:10.1016/j.snb.2016.11.104