The Efficacy of Clustering Algorithms for Young ‘Nam-Hom’ Coconut Gene Expression Data in Unveiling the Specific Genes Determining the Flavor: A Comparative Analysis of K-means and Fuzzy C-means

Authors

  • Supoj Hengpraprohm Nakhon Pathom Rajabhat University
  • Kairung Hengpraprohm Nakhon Pathom Rajabhat University
  • Kriengkrai Meethaworn Nakhon Pathom Rajabhat University

DOI:

https://doi.org/10.53848/ssstj.v11i2.806

Keywords:

Young ‘Nam-Hom’ coconut, Gene expression data, Clustering algorithms

Abstract

This study explores the application of K-means and Fuzzy C-means clustering techniques to analyze gene expression data related to the flavor of young ‘Nam-Hom’ coconuts. By comparing these clustering methods, the research aims to identify gene clusters that significantly influence the aromatic and off-flavor profiles of young ‘Nam-Hom’ coconuts stored at different temperatures (4°C and 25°C). Specifically, our findings highlight clusters involved in lipid metabolism and cold stress response which are crucial for developing desirable and undesirable flavors, such as LOX1 and ADH2 genes. The study advances our understanding of coconut genetics demonstrates the utility of clustering techniques in agricultural genomics, offering valuable pathways for future genetic enhancement and storage optimization strategies aimed at improving coconut aroma.

References

References

Alagukumar, S., & Lawrance, R. (2015). A selective analysis of microarray data using association rule mining. Procedia Computer Science, 47, 3-12. doi:10.1016/j.procs.2015.03.177

Bezdek, J. C., Ehrlich, R., & Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & Geosciences, 10(2-3), 191-203. doi:10.1016/0098-3004(84)90020-7

Hengpraprohm, S., Jungjit, S., Hengpraprohm, K, & Thammasiri, D. (2019). Molecular marker discovery for ovarian maturation level of the black tiger shrimp from microarray data using genetic algorithm. International Journal of the Computer, the Internet and Management, 27(2), 43-51.

Meethaworn, K. (2021). Cracking characteristic on polished young coconut and its prevention. Proceedings of the 13th NPRU National Academic Conference (pp. 209-216). Nakhon Pathom, Thailand (in Thai).

Meethaworn, K., Imsabai, W., Zhang, B., Chen, K., & Siriphanich, J. (2022). Off-flavor and loss of aroma in young coconut fruit during cold storage are associated with the expression of genes derived from the LOX pathway and Badh2. The Horticulture Journal, 91(2), 209-220. doi:10.2503/hortj.UTD-309

Meethaworn, K., Luckanatinwong, V., Zhang, B., Chen, K., & Siriphanich, J. (2019). Off-flavor caused by cold storage is related to induced activity of LOX and HPL in young coconut fruit. LWT, 114, 108329.

doi:10.1016/j.lwt.2019.108329

Mohpraman, K., & Siriphanich, J. (2012). Safe use of sodium metabisulfite in young coconuts. Postharvest Biology and Technology, 65, 76-78.

Office of Agricultural Economics. (2024). Amount and economic value of aromatic coconut. Retrieved from http://www.infoservice@oae.go.th

Pakcharoen, A., Meethaworn, K., & Mohpraman, K. (2012). The occurrence and deterrence of fruit cracking and off-flavor in aromatic coconut during storage at low temperature (Report No. KU.R.1/2011). Postharvest Technology Innovation Center (in Thai).

Saensuk, C., Wanchana, S., Choowongkomon, K., Wongpornchai, S., Kraithong, T., Imsabai, W., … Arikit, S. (2016). De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Science, 252, 324-334. doi:10.1016/j.plantsci.2016.08.014

Shahapure, K. R., & Nicholas, C. (2020). Cluster quality analysis using Silhouette Score. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (pp. 747-748). Sydney, Australia.

doi:10.1109/DSAA49011.2020.00096

Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised k-means clustering algorithm. IEEE Access, 8, 80716-80727. doi:10.1109/ACCESS.2020.2988796

Siriphanich, J., Saradhuldhat, P., Romphophak, T., Krisanapook, K., Pathaveerat, S., & Tongchitpakdee, S. (2011). Coconut (Cocos nucifera L.). In E. M. Yahia (Ed.), Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing.

Yong, J. W. H., Ge, L., Ng, Y. F., & Tan, S. N. (2009). The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14, 5144-5164. doi:10.3390/molecules14125144

Zhu, P., Zhu, W., Hu, Q., Zhang, C., & Zuo, W. (2017). Subspace clustering guided unsupervised feature selection. Pattern Recognition, 66, 364-374. doi:10.1016/j.patcog.2017.01.016

Downloads

Published

2024-07-23

How to Cite

Hengpraprohm, S., Hengpraprohm, K., & Meethaworn , K. (2024). The Efficacy of Clustering Algorithms for Young ‘Nam-Hom’ Coconut Gene Expression Data in Unveiling the Specific Genes Determining the Flavor: A Comparative Analysis of K-means and Fuzzy C-means. Suan Sunandha Science and Technology Journal, 11(2), 70–79. https://doi.org/10.53848/ssstj.v11i2.806

Issue

Section

Research Articles