Design and Development of Protective Equipment from Noise and Dust of Circular Saws
การออกแบบและพัฒนาอุปกรณ์ป้องกันอันตรายจากเสียงและฝุ่นสำหรับเลื่อยวงเดือน
Keywords:
Design and development, noise and dust, circular sawsAbstract
The purpose of this research was to design and develop protective devices against noise and dust for circular saws. The design and development were carried out twice, and the efficiency in reducing noise and dust was measured by measuring instruments. The results showed that in the first design using sound-absorbing material was compressed sponge, the average noise level (NL) before installing the device, the average NL was 91.9 dB(A), after installing the device, the average NL was 87.4 dB(A). The NL can be reduced by 4.5 dB(A). For the total dust (TD) analysis results, before installing the device, the TD content was 0.0409 mg/m3, and after installing the device, the TD content was 0.0304 mg/m3. The TD content was reduced by 0.0105 mg/m3. In the second, the design using sound-absorbing material was glass wool insulation, the average NL before installing the device was 92 dB(A), after installing the device, the average NL was 81 dB(A). The NL can be reduced by 11 dB(A). For the TD content, before installing the device, the TD content was 0.8333 mg/m3, and after installing the device, the TD content was 0.5243 mg/m3. The TD content was reduced by 0.3090 mg/m3.
Downloads
References
Miroslava V, Jozef V. Effect of the particle size of wood dust on ignition temperature. Key Eng Mater. 2017;755:38–43.
Goli G, Curti R, Marcon B, Scippa A, Campatelli G, Furferi R, Denaud L. Specific cutting forces of isotropic and orthotropic engineered wood products by round shape machining. Materials (Basel). 2018;11(12):1–14.
Salca EA, Bekhta P, Seblii Y. The effect of veneer densification temperature and wood species on the plywood properties made from alternate layers of densified and non-densified veneers. Forests. 2020;11(6):1–10.
Mirski R, Derkowski A, Dziurka D, Dukarska D, Czarnecki R. Effects of a chipboard structure on its physical and mechanical properties. Materials (Basel). 2019;12(22):1–10.
An Y, Li B. Wood dust exposure and the association with lung cancer risk. Adv Mech Eng. 2021;13(5):1–6.
Jan Svoren, Lubomir Nascak , Peter Koleda , Stefan Barcik MN. The circular saw blade body modification by elastic material layer effecting circular saws sound pressure level when idling and cutting. Appl Acoust. 2021;179:1–13.
Krilek J, Kovac J, Barcik S, Svoren J, Stefanek M, Kuvik T. The influence of chosen factors of a circular saw blade on the noise level in the process of cross cutting wood. Wood Res. 2016;61(3):475–86.
Owoyemi MJ, Falemara BC, Owoyemi AJ. Noise Pollution and Control in Mechanical Processing Wood Industries. Biomed Stat Informatics. 2017;2(2):54–60.
Litvinov AE, Novikov V V, Solod SA, Chukarin AN. Production Hazards of Saw Systems. Russ Eng Res. 2019;39(2):158–9.
Chukarin AN, Litvinov AE, Novikov V V. Reducing the noise and operator injuries associated with circular saws. Russ Eng Res. 2017;37(7):615–6.
Holla K, Ristvej J, Moricova V, Novak L. Results of survey among SEVESO establishments in the Slovak Republic. J Chem Heal Saf. 2016;23(2):9–17.
Pang Z, Zhu N, Cui Y, Li W, Xu C. Experimental investigation on explosion flame propagation of wood dust in a semi-closed tube. J Loss Prev Process Ind. 2020;63.
Markova I, Mrackova E, Ockajova A, Ladomersky J. Granulometry of selected wood dust species of dust from orbital sanders. Wood Res. 2016;61(6):983–92.
Liden G. Dustiness testing of materials handled at workplaces. Ann Occup Hyg. 2006;50(5):437–9.
โซเฟีย มะแซ, อัญชลี พงศ์เกษตร, ชมพูนุช สุภาพวานิช, จามรี สอนบุตร. พฤติกรรมการป้องกันตนเองจากฝุ่นของคนงานในโรงงานแปรรูปไม้ยางพารา อําเภอนาทวี จังหวัดสงขลา. วารสารสาธารณสุขและวิทยาศาสตร์สุขภาพ. 2565;5(2):18–32.
Ockajova A, Kucerka M, Kminiak R, Kristak L, Igaz R, Reh R. Occupational exposure to dust produced when milling thermally modified wood. Int J Environ Res Public Health. 2020;17(5Ockajova, Alena et al. 2020. “Occupational Exposure to Dust Produced When Milling Thermally Modified Wood.” International Journal of Environmental Research and Public Health 17(5): 1–14.):1–14.
Ockajova A, Kucerka M, Kristak L, Igaz R. Granulometric analysis of sanding dust from selected wood species. BioResources. 2018;13(4):7481–95.
Bhatti P, Newcomer L, Onstad L, Teschke K, Camp J, Morgan M. Wood dust exposure and risk of lung cancer. Occup Environ Med. 2010;68:599–604.
Pedzik M, Rogozinski T, Majka J, Stuper-Szablewska K, Antov P, Kristak L, Kminik R, Kucerka M. Fine dust creation during hardwood machine sanding. Appl Sci. 2021;11(14):1–11.
Ockajova A, Stebila J, Rybakowski M, Rogozinski T, Kristak L, Luptakova J. The granularity of dust particles when sanding wood and wood-based materials. Adv Mater Res. 2014;1001:432–7.
Igaz R, Kminiak R, Kristak L, Nemec M, Gergel T. Methodology of temperature monitoring in the process of CNC machining of solid wood. Sustain. 2019;11(1):1–11.
Turekova I, Markova I. Ignition of deposited wood dust layer by selected sources. Appl Sci. 2020;10(17):1–16.
Konopka A, Chuchala D, Orlowski KA, Vilkovská T, Klement I. The effect of beech wood (Fagus sylvatica L.) steaming process on the colour change versus depth of tested wood layer. Wood Mater Sci Eng. 2021;12:1–9.
Carlos H. Barcenas , George L. Delclos , Randa El-Zein , Guillermo Tortolero-Luna , Lawrence W. Whitehead MRS. Wood dust exposure and the association with lung cancer risk. Am J Ind Med. 2005;47(4):349–57.
Nasir V, Cool J. Characterization optimization and acoustic emission monitoring of airborne dust emission during wood sawing. Int J Adv Manuf Technol. 2020;109(9–12):2365–75.
Qi C, Kang S. Evaluation of saw blade designs on controlling dust from cutting fiber-cement. Aerosol Air Qual Res. 2021;21(8):1–12.
จิราภา เดชจิระกุล, ธนิต จินดาวณิค. ประสิทธิภาพการลดการถ่ายเทความร้อนในระบบผนังด้วยฉนวนใยแก้ว. สาระศาสตร์. 2563;1:81–92.
Yang Y, Li B, Chen Z, Sui N, Chen Z, Xu T, Li Y, Fu R, Jing Y. Sound insulation of multi-layer glass-fiber felts: Role of morphology. Text Res J. 2017;87(3):261–9.
Diano M, Nataletti P, Samele P, Spagnoli G. Noise risk assessment and management : woodworking in small and medium-sized craft enterprises. Prev Oggi. 2005;1(1):89–102.
Zent A, Long JT. Automotive sound absorbing material survey results. SAE Tech Pap. 2007;15(25):1–7.
Gvozdkova SI, Shvartsburg LE. Analysis of methods for increase of soundproofing structure efficiency for noise reduction during technological processes of machinery production. In: Proceedings of the 4th International Conference on Industrial Engineering. 2019. p. 1311–9.
Hui Wu J, Hu ZP, Zhou H. Sound absorbing property of porous metal materials with high temperature and high sound pressure by turbulence analogy. J Appl Phys. 2013;113(19).
XiaoDong Z, Mengdie W, JinXin H, Peng L, Bo Z, Rui W, Yu L. Research progress of sound absorption properties of wood-plastic composites. J For Eng. 2017;2(3):10–5.
Crocker J, Arenas M. Recent Trends in Porous Sound-Absorbing Materials. SOUND Vib [Internet]. 2010 [cited 2022 March 30]. Available from: http://www.sandv.com/downloads/1007croc.pdf
Zong D, Cao L, Li Y, Yin X, Si Y, Yu J, Ding B. Interlocked Dual‐Network and Superelastic Electrospun Fibrous Sponges for Efficient Low‐Frequency Noise Absorption. Small Struct. 2020;1(2):2000004.
Feng Y, Zong D, Hou Y, Yin X, Zhang S, Duan L, Si Y, Jia Y, Ding B. Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption. J Colloid Interface Sci. 2021;593:59–66.
Pinte G, Boonen R, Desmet W, Sas P. Active structural acoustic control of repetitive impact noise. Proc ISMA2006 Int Conf Noise Vib Eng. 2006;1:245–61.
พัชราวดี สุวรรณธาดา. ฝุ่นละอองในบรรยากาศ [อินเทอร์เน็ต]. 2557 [เข้าถึงเมื่อ 2 ตุลาคม 2564]. เข้าถึงได้จาก: https://thainews.prd.go.th/th/news/detail/TNSOC6104270010019
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.