Phytochemicals and Antioxidant Activity in Sugarcane (Saccharum officinarum L.) Bagasse Extracts


  • Prasong Srihanam Faculty of Science, Mahasarakham University
  • Ansaya Thonpho Faculty of Science, Mahasarakham University
  • Panadda Sanarat Faculty of Science, Mahasarakham University
  • Phongsathorn Motham Faculty of Science, Mahasarakham University


Phytochemical, Antioxidant, Sugarcane, Bagasse, Crude extract


The aim of this work was to screen the phenolic compounds and antioxidant activity of sugarcane ( Saccharum officinarum L. ) bagasse extracts. The selected sugarcane bagasse was cultivated in Maha Sarakham province. Suphanburi 50 (SP50) and 72 (SP72) and Authong 17 (AU17) cultivars were extracted with methanol and solvent evaporated using a rotary evaporator. The methanolic crude extracts were then analyzed for total phenolic (TPC), flavonoid (TFC), saponin (TSC), condensed tannin (TCT), and proanthocyanidin (TPAC) content. It was found that AU17 extract had the highest content of phytochemicals. The AU17 extract also has the highest antioxidant activities, when studied by free radical (ABTS, DPPH) scavenging activity and metal- (FRAP, CUPRAC) reducing power. TPC was positively correlated to DPPH, FRAP, and CUPRAC than that of ABTS, while TFC showed a high correlation using all the tested methods for antioxidant activity. Using HPLC, AU17 bagasse extract showed higher phytochemical contents than SP strains. The dominant substances in the sugarcane extracts were gallic acid, pcoumaric acid, caffeic acid, quercetin, and epicatechin. The results suggested that sugarcane bagasse is a potential source of natural phytochemicals and might be of use as a source of substances for health benefits.

Author Biographies

Prasong Srihanam, Faculty of Science, Mahasarakham University

Department of Chemistry

Ansaya Thonpho, Faculty of Science, Mahasarakham University

Department of Chemistry

Panadda Sanarat, Faculty of Science, Mahasarakham University

Department of Chemistry

Phongsathorn Motham, Faculty of Science, Mahasarakham University

Department of Chemistry


Abu Bakar, M. F., Mohamed, M., Rahmat, A., & Fry, J. (2009) . Phytochemicals and antioxidant activity of different parts of bambangan (Mangifera pajang) and tarap (Artocarpus odoratissimus). Food Chemistry, 113, 479-483. doi:10.1016/j.foodchem.2008.07.081

Alghazeer, R., El-Saltani, H., Saleh, N., Al-Najjar, A. , & Hebail, F. (2012) . Antioxidant and antimicrobial properties of five medicinal Libyan plants extracts. Natural Science, 4, 324-335. doi:10.4236/ns.2012.45045

Andjelkovic, M. , Camp, J. V. , Meulenaer, B. D. , Depaemelaere, G. , Socaciu, C. , Verloo, M. , & Verhe, R. (2006). Iron- chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chemistry, 98(1), 23-31. doi:10.1016/j.foodchem.2005.05.044

Antoniolli, A., Fontana, A. R., Piccoli, P., & Bottini, R. (2015). Characterization of polyphenols and evaluation of antioxidant capacity in grape pomace of the cv. Malbec. Food Chemistry, 178, 172-178. doi:10.1016/j.foodchem.2015.01.082

Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. doi:10.1021/jf048741x

Babbar, N., Oberoi, H. S., & Sandhu, S. K. (2015). Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition, 55(3), 319-337. doi:10.1080/10408398.2011.653734

Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013) . Antioxidant and structure- activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Science, 58(2), 173-181. doi:10.1016/j.aoas.2013.07.002

Benjakul, S., Kittiphattanabawon, P., Sumpavapol, P., & Maqsood, S. (2014). Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods. Journal of Food Science and Technology, 51(11), 3026-3037. doi:10.1007/s13197-012-0846-1

Berli, F. J., Alonso, R., Bressan-Smith, R., & Bottini, R. (2012) . UV-B impairs growth and gas exchange in grapevines grown in high attitude. Physiologia Plantarum, 149(1), 127-140. doi:10.1111/ppl.12012

Bian, J., Peng, F., Peng, X.-P., Peng, P., Xu, F., &, Sun, R.-C. (2013) . Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresource Technology, 127, 236-241. doi:10.1016/j.biortech.2012.09.112

Burin, V. M., Ferreira-Lima, N. E., Panceri, C. P., & Bordignon-Luiz, M. T. (2014). Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: Evaluation of different extraction methods. Microchemical Journal, 114, 155-163. doi:10.1016/j.microc.2013.12.014

Butsat, S., & Siriamornpun, S. (2010). Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chemistry, 119(2), 606-613. doi:10.1016/j.foodchem.2009.07.001

Butsat, S., Weerapreeyakul, N., & Siriamornpun, S. (2009). Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development. Journal of Agricultural and Food Chemistry, 57, 4566-4571. doi:10.1021/jf9000549

Carocho, M., & Ferreira, I. C. F. R. (2013). A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology, 51, 15-25. doi:10.1016/j.fct.2012.09.021

Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16-40. doi:10.1016/j.foodres.2014.01.057

Chupin, L., Motillon, C., Charrier-El, B. F., Pizzi, A., & Charrier, B. ( 2013) . Characterisation of maritime pine (Pinus pinaster) bark tannins extracted under different conditions by spectroscopic methods, FTIR and HPLC. Industrial Crops and Products, 49, 897-903. doi:10.1016/j.indcrop.2013.06.045

Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clinical Chemistry, 52(4), 601-623. doi:10.1373/clinchem.2005.061408

Denev, P. N., Kratchanov, C. G., Ciz, M., Lojek, A., & Kratchanova, M. G. (2012). Bioavailability and antioxidant activity of black chokeberry (Aronia melanocarpa) polyphenols: in vitro and in vivo evidences and possible mechanisms of action: A review. Comprehensive Reviews in Food Science and Food Safety, 11(5), 471-489. doi:10.1111/j.1541-4337.2012.00198.x

Duarte-Almeida, J. M., Negri, G. , Salatino, A., de Carvalho, J. E. , & Lajolo, F. M. ( 2007). Antiproliferative and antioxidant activities of a tricin acylated glycoside from sugarcane (Saccharum officinarum L.) juice. Phytochemistry, 68(8), 1165-1171. doi:10.1016/j.phytochem.2007.01.015

Farag, R. S., Abdel-Latif, M. S., Abd El Baky, H. H., & Tawfeek, L. S. ( 2020). Phytochemical screening and antioxidant activity of some medicinal plants’ crude juices. Biotechnology Reports, 28, e00536. doi:10.1016/j.btre.2020.e00536

Feng, S., Luo, Z., Zhang, Y., Zhong, Z., & Lu, B. (2014). Phytochemical contents and antioxidant capacities of different parts of two sugarcanes (Saccharum officinarum L.) cultivars. Food Chemistry, 151, 452-458. doi:10.1016/j.foodchem.2013.11.057

Guendez, R., Kallithraka, S., Makris, D. P., & Kefalas, P. (2005). Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity. Food Chemistry, 89(1), 1-9. doi:10.1016/j.foodchem.2004.02.010

Hiai, S., Oura, H., & Nakajima, T. (1976). Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Medica, 29(2), 116-122. doi:10.1055/s-0028-1097639

Jayaprakasha, G. K., Selvi, T., & Sakariah, K. K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Research International, 36(2), 117-122. doi:10.1016/S0963-9969(02)00116-3

Katalinić, V., Možina, S. S., Skroza, D., Generalić, I., Abramovič, H., Miloš, M., … Boban, M. (2010). Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry, 119(2), 715-723. doi:10.1016/j.foodchem.2009.07.019

Kim, S.-Y., Jeong, S.-M., Park, W.-P., Nam, K. C., Ahn, D. U., & Lee, S.-C. (2006). Effect of heating conditions of grape seeds on the antioxidant activity of grape seed extracts. Food Chemistry, 97(3), 472-479. doi:10.1016/j.foodchem.2005.05.027

Kraphankhieo, W., & Srihanam, P. (2016) . Investigation of phytochemical and antioxidant activity of different parts of sugarcane planted in Buriram province. Proceedings of the 12th Mahasarakham University Research Conference (pp. 728- 743). Retrieved from

Kubola, J., Siriamornpun, S., & Meeso, N. (2011). Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chemistry, 126, 972-981. doi:10.1016/j.foodchem.2010.11.104

Li, X., Lin, J., Gao, Y., Han, W., & Chen, D. (2012). Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chemistry Central Journal, 6(1), 1-10. doi:10.1186/1752-153X-6-140

Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chemistry, 96(2), 254-260. doi:10.1016/j.foodchem.2005.02.033

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4(8), 118-126. doi:10.4103/0973-7847.70902

Mandelli, F., Brenelli, L. B., Almeida, R. F., Goldbeck, R., Wolf, L. D., Hoffmam, Z. B., Squina, F. M. (2014). Simultaneous production of xylooligosaccharides and antioxidant compounds from sugarcane bagasse via enzymatic hydrolysis. Industrial Crops and Products, 52, 770-775. doi:10.1016/j.indcrop.2013.12.005

Meng, J. F., Fang, Y. L., Qin, M. Y., Zhuang, X. F., & Zhang, Z. W. (2012). Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China). Food Chemistry, 134(4), 2049-2056. doi:10.1016/j.foodchem.2012.04.005

Moran, J. F., Klucas, R. V., Grayer, R. J., Abian, J., & Becana, M. ( 1997). Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22, 861-870. doi:10.1016/s0891-5849(96)00426-1

Naowaset, D., & Srihanam, P. (2017). Phytochemical contents and antioxidant activity of partially purified sugarcane extract by silica gel column. Proceedings of the 13th Mahasarakham University Research Conference (pp. 444-453). Retrieved from http: / / www. journal. msu. ac. th/index.php?page=show_journal_article&j_id=5&article_id=2018

Pastrana-Bonilla, E., Akoh, C. C., Sellappan, S., & Krewer, G. (2003). Phenolic content and antioxidant capacity of muscadine grapes. Journal of Agricultural and Food Chemistry, 51(18), 5497-5503. doi:10.1021/jf030113c

Perumalla, A. V. S., & Hettiarachchy, N. S. (2011). Green tea and grape seed extracts–Potential applications in food safety and quality. Food Research International, 44(4), 827-839. doi:10.1016/j.foodres.2011.01.022

Rice-Evans, C. A. , Miller, N. J., & Paganga, G. (1997). Antioxidant properties of phenolic compounds. Trends of Plant Science, 2(4), 152-159. doi:10.1016/S1360-1385(97)01018-2

Soto-Garcia, M., & Rosales-Castro, M. (2016). Effect of solvent and solvent- to- solid ratio on the phenolic extraction and the antioxidant capacity of extracts from Pinus durangensis and Quercus sideroxyla bark. Maderas: Ciencia y Tecnologia, 18(4), 701-714. doi:10.4067/S0718-221X2016005000061

Sun, J., Chu, Y., Wu, X., & Liu, R.H. (2002). Antioxidant and antiproliferative activities of common fruits. Journal of Agricultural and Food Chemistry, 50, 7449-7454. doi:10.1021/jf0207530

Thaipong, K., Boonprakob, U., Crosby, K., CisnerosZevallos, L., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19, 669-675. doi:10.1016/j.jfca.2006.01.003

Wojdylo, A., Oszmianski, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949. doi:10.1016/j.foodchem.2007.04.038

Xia, D., Wu, X., Shi, J., Yang, Q., & Zhang, Y. (2011). Phenolic compounds from the edible seeds extract of Chinese Mei (Prunus mume Sieb. et Zucc) and their antimicrobial activity. LWT-Food Science and Technology, 44( 1), 347- 349. doi:10.1016/j.lwt.2010.05.017

Yilmaz, Y., & Toledo, R. T. (2004). Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. Journal of Agricultural and Food Chemistry, 52(2), 255-260. doi:10.1021/jf030117h

Zheng, R., Su, S., Zhou, H., Yan, H., Ye, J., Zhao, Z., You, L., & Fu, X. (2017). Antioxidant/antihyperglycemic activity of phenolics from sugarcane (Saccharum officinarum L.) bagasse and identification by UHPLC-HR-TOFMS. Industrial Crops and Products, 101, 104-114. doi:10.1016/j.indcrop.2017.03.012




How to Cite

Srihanam, P., Thonpho, A., Sanarat, P., & Motham, P. (2022). Phytochemicals and Antioxidant Activity in Sugarcane (Saccharum officinarum L.) Bagasse Extracts. Suan Sunandha Science and Technology Journal, 8(2), 26–35. Retrieved from



Research Articles