Preparation, Characterization and Antiradical Activity of Zinc Oxide Nanoparticles

Authors

  • Kanyarat Kumnoedauy Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
  • Pattareeya Damrongsak Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
  • Kitsakorn Locharoenrat Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang
  • Badin Damrongsak Faculty of Science, Silpakorn University

DOI:

https://doi.org/10.53848/ssstj.v9i2.225

Abstract

Zinc oxide nanoparticles (ZnO NPs) have recently been studied as a multi-functional and multi-target nanomedicine for cancer treatment. They can be used not only as a nanocarrier for delivery of the chemotherapy drug but also as an antiradical agent due to their photo-catalytic and photo-oxidizing abilities. Our previous work showed a potential use of commercial-available ZnO NPs without and with carboplatin for the treatment of retinoblastoma. The aim of this work was to synthesize ZnO NPs having smaller particle size than the commercial ones, i.e., 100 nm average diameter, in order to improve the reaction time. ZnO NPs were prepared by a sol-gel technique and calcined with different calcination conditions. The structure and particle size of ZnO powders were characterized using an x-ray diffractometer and a particle size analyzer. Average nanoparticle sizes of 16.32 ± 1.64 nm were achieved at a calcination temperature of 300 degree Celsius and 1 hour holding time. The antiradical activity of prepared ZnO NPs in cooperation with ultraviolet irradiation was assessed using a putative model of cancer cells, i.e., 2,2(diphenyl-1-picryhydrazyl) radicals (DPPH*). An optical spectroscopy was used to detect the decrease in peak absorbance of the antiradical solution at a wavelength of 515 nm, which in turn can be used to calculate the percent remaining of DPPH*. The disappearance of DPPH* with respect to the reaction time revealed that prepared ZnO NPs (16.32 ± 1.64 nm) improved response time as compared with ZnO NPs (100 nm). Moreover, the effective ZnO concentrations to reduce the initial DPPH* concentration by 50%, also known as the EC50 value in the present study, is lower indicating the improvement of anti-proliferative activity when compared to the commercial ZnO NPs.

Author Biographies

Kanyarat Kumnoedauy, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang

Department of Physics

Pattareeya Damrongsak, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang

Department of Physics

Kitsakorn Locharoenrat, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang

Department of Physics

Badin Damrongsak, Faculty of Science, Silpakorn University

Department of Physics

References

Alias, S. S., Ismail, A. B., & Mohamad, A. A. (2010). Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. Journal of Alloys and Compounds, 499(2), 231-237. doi:10.1016/j.jallcom.2010.03.174

Aruoma, O. I., & Cuppett, S. L. (Eds.). (1997). Antioxidant methodology: In vivo and in vitro concepts. The American Oil Chemists Society.

Awan, F., Islam, M. S., Ma, Y., Yang, C., Shi, Z., Berry, R. M., & Tam, K. C. (2018). Cellulose nanocrystal–ZnO nanohybrids for controlling photocatalytic activity and UV protection in cosmetic formulation. ACS Omega, 3(10), 12403-12411. doi:10.1021/acsomega.8b01881

Bhati, V. S., Hojamberdiev, M., & Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports, 6, 46-62. doi:10.1016/j.egyr.2019.08.070

Bisht, G. , & Rayamajhi, S. ( 2016) . ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine, 3. doi:10.5772/63437

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30. doi:10.1016/S0023-6438(95)80008-5

Chen, P., Wang, H., He, M., Chen, B., Yang, B., & Hu, B. (2019). Size-dependent cytotoxicity study of ZnO nanoparticles in HepG2 cells. Ecotoxicology and Environmental Safety, 171, 337-346. doi:10.1016/j.ecoenv.2018.12.096

da Silva, B. L., Caetano, B. L., Chiari-Andréo, B. G., Pietro, R. C. L. R., & Chiavacci, L. A. (2019). Increased antibacterial activity of ZnO nanoparticles: Influence of size and surface modification. Colloids and Surfaces B: Biointerfaces, 177, 440-447. doi:10.1016/j.colsurfb.2019.02.013

Devi, P. G., & Velu, A. S. (2016). Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. Journal of Theoretical and Applied Physics, 10(3), 233- 240. doi:10.1007/s40094-016-0221-0

Kinnunen, S., Lahtinen, M., Arstila, K., & Sajavaara, T. (2021). Hydrogen and deuterium incorporation in ZnO films grown by atomic layer deposition. Coatings, 11(5), 542. doi:10.3390/coatings11050542

Manikandan, B., Endo, T., Kaneko, S., Murali, K. R., & John, R. (2018). Properties of sol gel synthesized ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 29(11), 9474-9485. doi:10.1007/s10854-018-8981-8

Marin-Flores, C. A., Rodríguez-Nava, O., GarcíaHernández, M., Ruiz-Guerrero, R., JuárezLópez, F., & Morales-Ramírez, A. D. J. (2021). Free-radical scavenging activity properties of ZnO sub-micron particles: Size effect and kinetics. Journal of Materials Research and Technology, 13, 1665-1675. doi:10.1016/j.jmrt.2021.05.050

Martínez-Carmona, M., Gun’ko, Y., & Vallet-Regí, M. (2018). ZnO nanostructures for drug delivery and theranostic applications. Nanomaterials, 8(4), 268. doi:10.3390/nano8040268

Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., & Vaidya, B. (2017). Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discovery Today, 22(12), 1825-1834. doi:10.1016/j.drudis.2017.08.006

Narayana, A., Bhat, S. A., Fathima, A., Lokesh, S. V., Surya, S. G., & Yelamaggad, C. V. (2020). Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Advances, 10(23), 13532-13542. doi:10.1039/D0RA00478B

Nguyen, N. T., Nguyen, T. M. N., Le, N. T., & Le, T. K. (2020). Suppressing the photocatalytic activity of ZnO nanoparticles by Al-doping for the application in sunscreen products. Materials Technology, 35(6), 349-355. doi:10.1080/10667857.2019.1684733

Pairoj, S., Damrongsak, P., Damrongsak, B., Jinawath, N., Kaewkhaw, R., Leelawattananon, T., ... & Locharoenrat, K. (2019). Antiradical properties of chemo drug, carboplatin, in cooperation with ZnO nanoparticles under UV irradiation in putative model of cancer cells. Biocybernetics and Biomedical Engineering, 39(3), 893-901. doi:10.1016/j.bbe.2019.08.004

Rahman, F. (2019). Zinc oxide light-emitting diodes: A review. Optical Engineering, 58(1). doi:10.1117/1.OE.58.1.010901

Rani, S., Suri, P., Shishodia, P. K., & Mehra, R. M. (2008). Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 92(12), 1639-1645. doi:10.1016/j.solmat.2008.07.015

Shashanka, R., Esgin, H., Yilmaz, V. M., & Caglar, Y. (2020). Fabrication and characterization of green synthesized ZnO nanoparticle based dyesensitized solar cells. Journal of Science: Advanced Materials and Devices, 5(2), 185-191. doi:10.1016/j.jsamd.2020.04.005

Singh, T. A., Das, J., & Sil, P. C. (2020). Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science, 286. doi:10.1016/j.cis.2020.102317

Wahab, R., Siddiqui, M. A., Saquib, Q., Dwivedi, S., Ahmad, J., Musarrat, J., ... Shin, H. S. (2014). ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids and Surfaces B: Biointerfaces, 117, 267-276. doi:10.1016/j.colsurfb.2014.02.038

Wallace, R., Brown, A. P., Brydson, R., Wegner, K., & Milne, S. J. (2013). Synthesis of ZnO nanoparticles by flame spray pyrolysis and characterisation protocol. Journal of Materials Science, 48(18), 6393-6403. doi:10.1007/s10853-013-7439-x

Wasly, H. S., Abd El-Sadek, M. S., & Henini, M. (2018). Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Applied Physics A, 124, 1-12. doi:10.1007/s00339-017-1482-4

Downloads

Published

2022-07-04

How to Cite

Kumnoedauy, K., Damrongsak, P., Locharoenrat, K., & Damrongsak, B. (2022). Preparation, Characterization and Antiradical Activity of Zinc Oxide Nanoparticles. Suan Sunandha Science and Technology Journal, 9(2), 1–7. https://doi.org/10.53848/ssstj.v9i2.225

Issue

Section

Research Articles