Synthesis of Copper Nanoparticles-polyvinylpyrrolidone Composite Materials Using Simultaneous Irradiation Process

Authors

  • Wanvimol Pasanphan Faculty of Science, Kasetsart University
  • Thanawat Kasemsankidakarn Faculty of Science, Kasetsart University
  • Parichart Kongkaoroptham Faculty of Science, Kasetsart University
  • Thananchai Piroonpan Faculty of Science, Kasetsart University

DOI:

https://doi.org/10.53848/ssstj.v9i2.232

Keywords:

Copper nanoparticles, Poly (vinylpyrrolidone), Nanocomposite, Irradiation

Abstract

An approach for the synthesis of copper nanoparticles ( CuNPs) embedded in poly ( vinylpyrrolidone) ( PVP) composite materials is proposed using a simultaneous irradiation process. The parameters, i.e., copper sulfate ( CuSO4) precursor, VP and PVP concentrations were optimized for synthesis of CuNPs under irradiation. Crosslinking of PVP system was analyzed by gel fraction and swelling degree using gravimetric measurement. Functionality, chemical composition and crystallinity of the CuNPs-PVP composite materials were characterized by FT-IR, SEM-EDS, XRD. Morphology of the CuNPs-PVP composite materials was observed using SEM. Light blue color of Cu2+ precursor in liquid polymer/monomer system changed to dark brown color of Cu in solid form. Stable CuNPs with the particle diameters ranging from ca.100 to 500 nm was successfully synthesized in the PVP solid materials. A simple and effective process for the preparation of the CuNPs-PVP composite materials serves as a new generation of process and functional nanomaterials for industrial applications.

Author Biographies

Wanvimol Pasanphan, Faculty of Science, Kasetsart University

Department of Materials Science

Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN)

Thanawat Kasemsankidakarn, Faculty of Science, Kasetsart University

Department of Materials Science

Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN)

Parichart Kongkaoroptham, Faculty of Science, Kasetsart University

Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN)

Thananchai Piroonpan, Faculty of Science, Kasetsart University

Center of Radiation Processing for Polymer Modification and Nanotechnology (CRPN)

References

Ahmad, S. I. B., Ahmad, M. S. B. H., & Radiman, S. B. (2009). A study on gamma irradiation synthesis of copper nanoparticles. AIP Conference Proceedings, 1136(1), 186-190. doi:10.1063/1.3160127

Alyan, A., Abdel-Samad, S., Massoud, A., & Waly, S. A. (2019). Characterization and thermal conductivity investigation of copperpolyaniline nano composite synthesized by gamma radiolysis method. Heat and Mass Transfer, 55, 2409-2417.

doi:10.1007/s00231-019-02588-z

Athanassiou, E. K., Grass, R. N., & Stark, W. J. (2006). Large-scale production of carbon-coated

copper nanoparticles for sensor applications. Nanotechnology, 17(6), 1668-1673. doi:10.1088/0957-4484/17/6/022

Biçer, M., & Şişman, İ. (2010). Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution. Powder Technology, 198(2), 279-284. doi:10.1016/j.powtec.2009.11.022

Bondaz, L., Fontaine, P., Muller, F., Pantoustier, N., Perrin, P., Morfin, I., ... Cousin, F. (2020). Controlled synthesis of gold nanoparticles in copolymers nanomolds by X-ray radiolysis. Langmuir, 36(22), 6132-6144. doi:10.1021/acs.langmuir.0c00554

Chandra, S., Kumar, A., & Tomar, P. K. (2014). Synthesis and characterization of copper nanoparticles by reducing agent. Journal of Saudi Chemical Society, 18(2), 149-153. doi:10.1016/j.jscs.2011.06.009

Cheng, C., Li, J., Shi, T., Yu, X., Fan, J., Liao, G., ... & Tang, Z. (2017). A novel method of synthesizing antioxidative copper nanoparticles for high performance conductive ink. Journal of Materials Science: Materials in Electronics, 28(18), 13556-13564. doi:10.1007/s10854-017-7195-9

Flores-Rojas, G. G., López-Saucedo, F., & Bucio, E. (2020). Gamma-irradiation applied in the synthesis of metallic and organic nanoparticles: A short review. Radiation Physics and Chemistry, 169, 107962. doi:10.1016/j.radphyschem.2018.08.011

Giuffrida, S., Costanzo, L. L., Ventimiglia, G., & Bongiorno, C. (2008). Photochemical synthesis of copper nanoparticles incorporated in poly (vinyl pyrrolidone). Journal of Nanoparticle Research, 10(7), 1183-1192. doi:10.1007/s11051-007-9343-2

Hiremath, P., Nuguru, K., & Agrahari, V. (2019). Material attributes and their impact on wet granulation process performance. In A. S. Narang, & S. Badawy (Eds.), Handbook of pharmaceutical wet granulation (pp. 263-315). Academic Press.

Hsu, S. L. C., & Wu, R. T. (2007). Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 61(17), 3719-3722. doi:10.1016/j.matlet.2006.12.040

Ismail, N. A., Shameli, K., Wong, M. M. T., Teow, S. Y., Chew, J., & Sukri, S. N. A. M. (2019). Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance. Materials Science and Engineering: C, 104, 109899. doi:10.1016/j.msec.2019.109899

Jannoo, K., Teerapatsakul, C., Punyanut, A., & Pasanphan, W. (2015). Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies. Radiation Physics and Chemistry, 112, 177-188. doi:10.1016/j.radphyschem.2015.03.035

Joshi, S. S., Patil, S. F., Iyer, V., & Mahumuni, S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostructured Materials, 10(7), 1135-1144. doi:10.1016/S0965-9773(98)00153-6

Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 44(41), 17883-17905. doi:10.1039/C5DT02964C

Kumar, G. G., Kim, P., Nahm, K. S., & Elizabeth, R. N. (2007). Structural characterization of PVdF-HFP/PEG/Al2O3 proton conducting membranes for fuel cells. Journal of Membrane Science, 303(1-2), 126-131. doi:10.1016/j.memsci.2007.06.069

Meyre, M. E., Tréguer-Delapierre, M., & Faure, C. (2008). Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Langmuir, 24(9), 4421-4425. doi:10.1021/la703650d

Misra, N., Biswal, J., Gupta, A., Sainis, J. K., & Sabharwal, S. (2012). Gamma radiation induced synthesis of gold nanoparticles in aqueous polyvinyl pyrrolidone solution and its application for hydrogen peroxide estimation. Radiation Physics and Chemistry, 81(2), 195-200. doi:10.1016/j.radphyschem.2011.10.014

Moazzenchi, B., & Montazer, M. (2020). Click electroless plating and sonoplating of polyester with copper nanoparticles producing conductive fabric. Fibers and Polymers, 21(3), 522-531. doi:10.1007/s12221-020-9664-7

Pasanphan, W., & Chirachanchai, S. (2008). Polyethylene film surface functionalized with chitosan via γ-ray irradiation in aqueous system: An approach to induce copper (II) ion adsorptivity on PE. Reactive and Functional Polymers, 68(8), 1231-1238. doi: 10.1016/j.reactfunctpolym.2008.05.006

Pasanphan, W., Haema, K., Tangthong, T., & Piroonpan, T. (2014). Modification of chitosan onto PE by irradiation in salt solutions and possible use as Cu2+ complex film for pest snail control. Journal of Applied Polymer Science, 131(23), 41204. doi:10.1002/app.41204

Pham, L. Q., Sohn, J. H., Kim, C. W., Park, J. H., Kang, H. S., Lee, B. C., & Kang, Y. S. (2012). Copper nanoparticles incorporated with conducting polymer: Effects of copper concentration and surfactants on the stability and conductivity. Journal of Colloid and Interface Science, 365(1), 103-109. doi:10.1016/j.jcis.2011.09.041

Phul, R., Kaur, C., Farooq, U., & Ahmad, T. (2018). Ascorbic acid assisted synthesis, characterization and catalytic application of copper nanoparticles. Material Science & Engineering International Journal, 2(4), 90-94. doi:10.15406/mseij.2018.02.00040

Piroonpan, T., Katemake, P., & Pasanphan, W. (2020). Comparative study of different chitosan solutions to assist the green synthesis of gold nanoparticles under irradiation. Radiation Physics and Chemistry, 169, 108250. doi:10.1016/j.radphyschem.2019.03.054

Pornpitchanarong, C., Rojanarata, T., Opanasopit, P., Ngawhirunpat, T., & Patrojanasophon, P. (2020). Synthesis of novel Nvinylpyrrolidone/acrylic acid nanoparticles as drug delivery carriers of cisplatin to cancer cells. Colloids and Surfaces B: Biointerfaces, 185, 110566. doi:10.1016/j.colsurfb.2019.110566

Ramesh, S., Vetrivel, S., Suresh, P., & Kaviarasan, V. (2020). Characterization techniques for nano particles: A practical top down approach to synthesize copper nano particles from copper chips and determination of its effect on planes. Materials Today: Proceedings, 33, 2626-2630. doi:10.1016/j.matpr.2020.01.157

Ramnani, S. P., Biswal, J., & Sabharwal, S. (2007). Synthesis of silver nanoparticles supported on silica aerogel using gamma radiolysis. Radiation Physics and Chemistry, 76(8-9), 1290-1294. doi:10.1016/j.radphyschem.2007.02.074

Tangthong, T., Piroonpan, T., Thipe, V. C., Khoobchandani, M., Katti, K., Katti, K. V., & Pasanphan, W. (2021a). Bombesin peptide conjugated water-soluble chitosan gallate—A new nano pharmaceutical architecture for the rapid one-pot synthesis of prostate tumor targeted gold nanoparticles. International Journal of Nanomedicine, 16, 6957-6981. doi:10.2147/IJN.S327045

Tangthong, T., Piroonpan, T., Thipe, V. C., Khoobchandani, M., Katti, K., Katti, K. V., & Pasanphan, W. (2021b). Water-soluble chitosan conjugated DOTA-Bombesin peptide capped gold nanoparticles as a targeted therapeutic agent for prostate cancer. Nanotechnology, Science and Applications, 14, 69-89. doi:10.2147/NSA.S301942

Tomotoshi, D., & Kawasaki, H. (2020). Surface and interface designs in copper-based conductive inks for printed/flexible electronics. Nanomaterials, 10(9), 1689. doi:10.3390/nano10091689

Vijaya, N., Selvasekarapandian, S., Nithya, H., & Sanjeeviraja, C. (2015). Proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone) doped with ammonium iodide. International Journal of Electroactive Materials, 3, 20-27.

Wahyudi, S., Soepriyanto, S., & Mubarok, M. Z., & Sutarno. (2018). Synthesis and applications of copper nanopowder–A review. IOPConference Series: Materials Science and Engineering, 395(1), 012014. doi:10.1088/1757-899X/395/1/012014

Wongkrongsak, S., Tangthong, T., & Pasanphan, W. (2016). Electron beam induced water soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nano colloid. Radiation Physics and Chemistry, 118, 27-34. doi:10.1016/j.radphyschem.2015.03.020

Wongpisutpaisan, N., Charoonsuk, P., Vittayakorn, N., & Pecharapa, W. (2011). Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia, 9, 404-409. doi:10.1016/j.egypro.2011.09.044

Zhou, F., Zhou, R., Hao, X., Wu, X., Rao, W., Chen, Y., & Gao, D. (2008). Influences of surfactant (PVA) concentration and pH on the preparation of copper nanoparticles by electron beam irradiation. Radiation Physics and Chemistry, 77(2), 169-173. doi:10.1016/j.radphyschem.2007.05.007

Zinn, A. A., Stoltenberg, R. M., Fried, A. T., Chang, J., Elhawary, A., Beddow, J., & Chiu, F. (2012). Nanocopper based solder-free electronic assembly material. Nanotech, 2, 71-74.

Downloads

Published

2022-11-17

How to Cite

Pasanphan, W., Kasemsankidakarn, T., Kongkaoroptham, P., & Piroonpan, T. (2022). Synthesis of Copper Nanoparticles-polyvinylpyrrolidone Composite Materials Using Simultaneous Irradiation Process. Suan Sunandha Science and Technology Journal, 9(2), 37–47. https://doi.org/10.53848/ssstj.v9i2.232

Issue

Section

Research Articles