Influence of Tinuvin 292 on Chlorinated Rubber Varnish/ Coating Properties under UV Radiation


  • THANH Nguyen Trung Department of Chemical Technology, Institute of Technology Hanoi, Vietnam



Chlorinated rubber paint, Aged coating, Polymer, Tinuvin 292


This article presents the effect of Tinuvin 292 (a light stabilizer based on liquid hindered amine) on properties of chlorinated rubber varnish/coating under 100 UV-thermo-humidity complex cycles. The properties included relative hardness, adhesion, flexural strength, impact resistance, and gloss loss. The results showed that 2.5 weight percent (wt%) of Tinuvin 292 had much improved physical properties of varnish coating such as relative hardness, adhesion, flexural strength, impact resistance, and gloss loss. Fourier-transform infrared spectroscopy (FT-IR),Thermogravimetric analysis (TGA), and Field Emission Scanning Electron Microscopy (FESEM) were used to evaluate the changes of aged coatings in comparison to the initial ones. FT-IR spectrums also showed that intensities of CH2 and C=O (ester) groups changed strongly or slightly depending on the appearance of Tinuvin 292. SEM images indicated that the surface of aged coating with Tinuvin 292 was smoother than coating without Tinuvin 292. TGA also expressed that thermal oxidation stability of chlorinated rubber varnish/ coating had been enhanced with 2.5 wt% of Tinuvin 292.


Ahmed, N. M., Emira, H. S., & Tawfik, H. M. (2013).Anticorrosive efficiency of ion-exchangedbentonites in chlorinated rubber paints.Pigment & Resin Technology, 42(3), 186-194.doi:10.1108/03699421311317352

Bano, H., Khan, M. I., & Kazmi, S. A. (2013). SEM-EDX and FTIR studies of chlorinated rubber coating. Journal of the Chemical Society of Pakistan, 35(1), 95-108.

Cogulet, A., Blanchet, P., & Landry, V. (2019).Evaluation of the impacts of four weathering methods on two acrylic paints: Showcasing distinctions and particularities. Coatings, 9(2),121. doi:10.3390/coatings9020121

Crescenzo, M. M. D., Zendri, E., Pons, M. S., Lospez,L. F., & Marco, D. J. Y. (2014). The use of waterborne paints in contemporary murals: Comparing the stability of vinyl, acrylic and styrene-acrylic formulations to outdoor weathering conditions. Polymer Degradation and Stability, 107, 285-293.doi:10.1016/j.polymdegradstab.2013.12.034

Das, S., Pandey, P., Mohanty, S., & Nayak, S. K.(2017). Investigation into the influence of UV aging on greenpolyurethane/nanosilicacomposite coatings based on transesterified castor oil and palm oil isocyanate. Journal of Inorganic and Organometallic Polymers and Materials, 27(3), 641-657.doi:10.1007/s10904-017-0506-z

Hu, J., Li, X., Gao, J., & Zhao, Q. (2009). Ageing behavior of acrylic polyurethane varnish coating in artificial weathering environments. Progress in Organic Coatings, 65(4), 504-509.doi:10.1016/j.porgcoat.2009.05.002

Ismail, I., & Harun, M. K. (2016). Cathodic disbonding of industrial chlorinated rubber-based primer used in rubber/metal composites: An electrochemical impedance spectroscopy analysis. Rubber Chemistry and Technology,89(4), 712-723.doi:10.5254/rct.16.83793

Kahrizsangi, A. G., Neshati, J., Shariatpanahi, H., & Akbarinezhad, E. (2015). Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Progress in Organic Coatings, 85, 199-207.doi:10.1016/j.porgcoat.2015.04.011

Kızılkonca, E., & Erim, F. B. (2019). Development of anti-aging and anticorrosive nanoceria dispersed alkyd coating for decorative and industrial purposes. Coatings, 9(10), 610.doi:10.3390/coatings9100610

Kotnarowska, D. (2018). Influence of ageing with UV radiation on physicochemical properties of acrylic-polyurethane coatings. Journal of Surface Engineered Materials and Advanced Technology, 8(4), 95-109.

Kozak, A. (2015). Multi-criteria assessment of an acrylic coating exposed to natural and artificial weathering. Procedia Engineering, 108,664-672.doi:10.1016/j.proeng.2015.06.197

Lang, Y., Sun, Y., Yu, M., Ji, Y., Wang, L., & Zhang,Z. (2019). Differential colonization dynamics of marine biofilm-forming eukaryotic microbes on different protective coating materials.Polymers, 11(1),161.doi:10.3390/polym11010161

Liu, X., Xiong, J., Lv, Y., & Zuo, Y. (2009). Study on corrosion electrochemical behavior of several different coating systems by EIS.Progress in Organic Coatings, 64(4), 497-503.doi:10.1016/j.porgcoat.2008.08.012

Moore, E. (2017). Fourier transform infrared spectroscopy (FTIR): Methods, analysis, and research insights. New York: Nova Science Publishers.

Morsi, S. M. M., Emira, H. S., El-Sawy, S. M.,Mohsen, R. M., & Khorshed, L. A. (2019).Synthesis and characterization of kaolinite/polyaniline nanocomposites and investigating their anticorrosive performance in chlorinated rubber/alkyd coatings. Polymer Composites, 40(7), 2777-2789.doi:10.1002/pc.25086

Nguyen, T. V., Dao, P. H., Duong, K. L., Duong, Q.H., Vu, Q. T., Nguyen, A. H., … Le, T. L. (2017).Effect of R-TiO2 and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating. Progress in Organic Coatings, 110,114-121.doi:10.1016/j.porgcoat.2017.02.017

Nikafshar, S., Zabihi, O., Ahmadi, M., Mirmohseni,A., Taseidifar, M., & Naebe, M. (2017). The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials, 10(2), 180.doi:10.3390/ma10020180

Olabisi, O., & Adewale, K. (2015). Handbook of thermoplastics (2nd ed.). Boca Raton, FL: CRC Press.

Pintus, V., Wei, S., & Schreiner, M. (2016).Accelerated UV ageing studies of acrylic,alkyd, and polyvinyl acetate paints: Influence of inorganic pigments. Microchemical Journal,124, 949-961.doi:10.1016/j.microc.2015.07.009

Queant, C., Blanchet, P., Landry, V., & Schorr, D.(2018). Comparison of two encapsulation systems of UV stabilizers on the UV protection efficiency of wood clear coats. Journal of Polymer Engineering, 39(1), 94-103.doi:10.1515/polyeng-2018-0026

Rus, A. Z. M., Kemp, T. J., & Clark, A. J. (2008).Degradation studies of polyurethanes based on vegetable oils. Part 1. Photodegradation, Progress in Reaction Kinetics and Mechanism,33(4), 363-391.doi:10.3184/146867808X377140

Sakhri, A., Perrin, F. X., Aragon, E., Lamouric, S., & Benaboura, A. (2010). Chlorinated rubber paints for corrosion prevention of mild steel: A comparison between zinc phosphate and polyaniline pigments. Corrosion Science,52(3),901-909.doi:10.1016/j.corsci.2009.11.010

Selli, N. T., Duman, F., & Yagyemez, T. (2021).Evaluation of antislip properties of ceramic-polymer composite coating on ceramic tiles.The International Journal of Materials and Engineering Technology,4(1),79-90.

Shenoy, M. A., & Marathe, Y. D. (2007). Studies on synergistic effect of UV absorbers and hindered amine light stabilisers. Pigment & Resin Technology, 36(2), 83-89.doi:10.1108/03699420710733510

Talbert, R. (2007). Paint technology handbook. Boca Raton, FL: CRC Press.

Thanh, N. T. (2020). The effects of TDI on selected properties of ester epoxy alkyd varnish. VNU Journal of Science: Natural Sciences and Technology, 36(4),1-8.doi:10.25073/2588-1140/vnunst.4933

Thanh, N. T. (2022a). Effect of graphene oxide on UV-thermo-humidity degradation of environmentally friendly alkyd composite coating. Malaysian Journal on Composites Science and Manufacturing, 9(1),1-10.doi:10.37934/mjcsm.9.1.110

Thanh, N. T. (2022b). Study on effects of isocyanate on some properties of epoxy varnish. Vietnam Journal of Chemistry,60(1),15-20.doi:10.1002/vjch.202100030

Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2, 398.doi:10.1186/2193-1801-2-398

Yu, H., Li, S., Zhong, J., & Xu, K. (2004). Studies of thermooxidative degradation process of chlorinated natural rubber from latex. Thermochimica Acta, 410(1-2), 119-124.doi:10.1016/S0040-6031(03)00402-7




How to Cite

Nguyen Trung, T. (2023). Influence of Tinuvin 292 on Chlorinated Rubber Varnish/ Coating Properties under UV Radiation. Suan Sunandha Science and Technology Journal, 10(2), 132–140.



Research Articles