Conductive Composite Paper from Cellulose Fiber by in situ Polymerization of Pyrrole


  • Siripassorn Sukhkhawuttigit Division of Physics, Faculty of Science and Technology, Thammasat University, Klong Nueng, Klong Luang, Pathum-Thani, Thailand
  • Sarute Ummartyotin Division of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Klong Nueng, Klong Luang, Pathum-Thani, Thailand
  • Yingyot Infahsaeng Division of Physics, Faculty of Science and Technology, Thammasat University, Klong Nueng, Klong Luang, Pathum-Thani, Thailand


Polypyrrole, Conductive composite materials, in situ Synthesized


Currently, conducting polymers such as Polypyrrole (PPy), have been extensively interested due to their
interesting features of conductivity, low-cost fabrication, and stability under ambient conditions and at high temperature. Herein, polypyrrole was polymerized on the surface of cellulose fibers (CFs) by using a sequence of fiber impregnation in FeCl3 solutions and re-dispersion in a pyrrole solution via in situ chemical polymerization of monomer-pyrrole. The structure, morphology, and thermal properties were investigated. The results revealed the uniformly of PPy on the surface of CFs. Moreover, conductivity of 184×10-4 Sꞏcm−1 was obtained from a composites sheet of CFs:PPy with the PPy of 0.20 ml. Also, the decreasing of dielectric and impedance in CFs:PPy composites sheet can be observed as the increasing of CFs:PPy ratio. Chemical polymerization has been very successful in the production of composite materials of conductivity polymers with CFs.


Ali, F., Reinert, L., Lévêque, J.-M., Duclaux, L., Muller, F., Saeed, S., & Shah, S. S. (2014). Effect of sonication conditions: solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles. Ultrasonics sonochemistry, 21(3), 1002-1009. doi: 10.1016/j.ultsonch.2013.10.010

Chougule, M., Dalavi, D., Mali, S., Patil, P., Moholkar, A., Agawane, G., . . . Patil, V. (2012). Novel method for fabrication of room temperature polypyrrole–ZnO nanocomposite NO2 sensor. Measurement, 45(8), 1989-1996. doi: 10.1016/j.measurement.2012.04.023

Du, X., Zhang, Z., Liu, W., & Deng, Y. (2017). Nanocellulose-based conductive materials and their emerging applications in energy devices-

A review. Nano Energy, 35, 299-320. doi:10.1016/j.nanoen.2017.04.001

El Nahrawy, A. M., Haroun, A. A., Hamadneh, I., & Al-Dujaili, A. H. (2017). Conducting cellulose/TiO2 composites by in situ polymerization of pyrrole. Carbohydrate polymers, 168, 182-190. doi:10.1016/j.carbpol.2017.03.066

Fackler, K., Stevanic, J. S., Ters, T., Hinterstoisser, B., Schwanninger, M., & Salmén, L. (2011). FT-IR imaging microscopy to localise and characterise simultaneous and selective whiterot decay within spruce wood cells. Holzforschung, 65(3), 411-420.

Ford, E. N. J., Mendon, S. K., Thames, S. F., & Rawlins, J. W. (2010). X-ray diffraction of cotton treated with neutralized vegetable oilbased

macromolecular crosslinkers. Journal of Engineered Fibers and Fabrics, 5(1), 155892501000500102. doi:10.1177/155892501000500102

Fu, J., Zhang, J., Song, X., Zarrin, H., Tian, X., Qiao, J., ... Chen, Z. (2016). A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries. Energy & Environmental Science, 9(2), 663-670. doi:10.1039/c5ee03404c

Hansora, D., Shimpi, N., & Mishra, S. (2015). Graphite to graphene via graphene oxide: an overview on synthesis, properties, and applications. Jom, 67(12), 2855-2868. doi: 10.6084/m9.figshare.1094371

Ho, T. A., Jun, T.-S., & Kim, Y. S. (2013). Material and NH3-sensing properties of polypyrrolecoated tungsten oxide nanofibers. Sensors and

Actuators B: Chemical, 185, 523-529. doi:10.1016/j.snb.2013.05.039

Lay, M., Méndez, J. A., Delgado-Aguilar, M., Bun, K. N., & Vilaseca, F. (2016). Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydrate polymers, 152, 361-369. doi:10.1016/j.carbpol.2016.06.102

Li, J., Wang, Y., & Ba, D. (2012). Characterization of semiconductor surface conductivity by using microscopic four-point probe technique.

Physics Procedia, 32, 347-355. doi: 10.1016/j.phpro.2012.03.568

Li, Y., Zhang, H., Ni, S., & Xiao, H. (2018). In situ synthesis of conductive nanocrystal cellulose/polypyrrole composite hydrogel based on semi-interpenetrating network. Materials Letters, 232, 175-178.

Luo, Y.-L., Fan, L.-H., Xu, F., Chen, Y.-S., Zhang, C.-H., & Wei, Q.-B. (2010). Synthesis and characterization of Fe3O4/PPy/P (MAA-co-AAm) trilayered composite microspheres with electric, magnetic and pH response characteristics. Materials Chemistry and Physics, 120(2-3),


Mahadeva, S. K., & Kim, J. (2011). Enhanced electrical properties of regenerated cellulose by polypyrrole and ionic liquid nanocoating.

Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 225(1), 33-39. doi:10.1177/

Mohanty, A. K., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the

green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.

Müller, D., Rambo, C., Recouvreux, D., Porto, L., & Barra, G. (2011). Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synthetic Metals, 161(1-2),106-111. doi:10.1016/j.synthmet.2010.11.005

Nakata, M., & Kise, H. (1993). Preparation of Polypyrrole-Poly(vinyl chloride) Composite Films by Interphase Oxidative Polymerization.

Polymer Journal, 25(1), 91-94. doi:10.1295/polymj.25.91

Pleumphon, C., Thiangtham, S., Pechyen, C., Manuspiya, H., & Ummartyotin, S. (2017). Development of conductive bacterial cellulose

composites: An approach to bio-based substrates for solar cells. Journal of Biobased Materials and Bioenergy, 11(4), 321-329.doi:10.1166/


Poletto, M., Pistor, V., Zeni, M., & Zattera, A. J. (2011). Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 96(4), 679-685. doi:10.1016/j.polymdegradstab.2010.12.007

Porjazoska Kujundjiski, A., Chamovska, D., & Grchev, T. (2014). Capacitive properties of polypyrrole/activated carbon composite. Hemijska industrija, 68, 63-63. doi:10.2298/HEMIND140305063P

Raghunathan, S. P., Narayanan, S., Poulose, A. C., & Joseph, R. (2017). Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydrate polymers, 157, 1024-1032. doi:10.1016/j.carbpol.2016.10.065

Rosa, M., Medeiros, E., Malmonge, J., Gregorski, K., Wood, D., Mattoso, L., . . . Imam, S. (2010). Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate polymers, 81(1), 83-92. doi:10.1016/


Ummartyotin, S., & Manuspiya, H. (2015a). A critical review on cellulose: from fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 41, 402-412. doi: 10.1016/j.rser.2014.08.050

Ummartyotin, S., & Manuspiya, H. (2015b). An overview of feasibilities and challenge of conductive cellulose for rechargeable lithium

based battery. Renewable and Sustainable Energy Reviews, 50, 204-213. doi:10.1016/j.rser.2015.05.014

Wang, S., Lu, A., & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169-206. doi:10.1016/j.progpolymsci.2015.07.003

Xu, F., Yu, J., Tesso, T., Dowell, F., & Wang, D. (2013). Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Applied Energy, 104,801-809. doi:10.1016/j.apenergy.2012.12.019

Zhong, Q., Zhong, J., Hu, B., Hu, Q., Zhou, J., & Wang, Z. L. (2013). A paper-based nanogenerator as a power source and active sensor. Energy & Environmental Science, 6(6), 1779-1784. doi:10.1039/c3ee40592c




How to Cite

Sukhkhawuttigit, S. ., Ummartyotin, S. ., & Infahsaeng, Y. . (2022). Conductive Composite Paper from Cellulose Fiber by in situ Polymerization of Pyrrole. Suan Sunandha Science and Technology Journal, 7(1), 22–29. Retrieved from



Research Articles

Similar Articles

You may also start an advanced similarity search for this article.