A Polymeric Coating on Prelithiated Silicon-Based Nanoparticles for High Capacity Anodes used in Li-ion Batteries

Authors

  • Natthaphong Kamma Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
  • Yutthanakon Kanaphan Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
  • Sunisa Buakeaw Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
  • Songyoot Kaewmala Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC-KKU (RNN), Khon Kaen University, Khon Kaen 40002, Thailand
  • Chirapan Chaikawang Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Research Network of NANOTEC-KKU (RNN), Khon Kaen University, Khon Kaen 40002, Thailand
  • Jeffrey Nash Graduate School, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
  • Sutham Srilomsak Graduate School, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
  • Nonglak Meethong Materials Science and Nanotechnology Program, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Keywords:

Lithium ion batteries, Silicon, Prelithiation

Abstract

Silicon is a promising candidate anode material for lithium ion batteries due to its high theoretical specific capacity of 4,200 mAh g -1 and low discharge potential. However, a high irreversible capacity loss due to a solid electrolyte interphase formation on the surface of Si anodes during the 1st cycle limits its practical applications. Prelithiation is considered an attractive method that can be used to compensate for the active lithium losses during the 1 st cycle. Surface oxidation to Li2O when the material comes into contact with moisture and oxygen during electrode fabrication is a main obstacle, leading to poor electrochemical stability. In this work the surface stability of prelithiated Si-based nanoparticles was modified via a polymeric nano-coating method. The results demonstrate
that coating with 1-fluorooctane is an effective strategy to mitigate irreversible capacity loss and provide electrochemical stability for high performance next generation lithium ion batteries.

References

Aurbach, D. (1994). The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable

‘Rocking-Chair’ type batteries. Journal of The Electrochemical Society, 141(3), 603. doi:10.1149/1.2054777

Beaulieu, L., Eberman, K., Turner, R., Krause, L., & Dahn, J. (2001). Colossal reversible volume changes in lithium alloys. Electrochemical and

Solid-State Letters, 4(9), A137-A140. doi:10.1149/1.1388178

DiLeo, R. A., Ganter, M. J., Thone, M. N., Forney, M. W., Staub, J. W., Rogers, R. E., et al. (2013). Balanced approach to safety of high

capacity silicon–germanium–carbon nanotube free-standing lithium ion battery anodes. Nano Energy, 2(2), 268-275. doi: 10.1016/j.nanoen.

09.007

Domi, Y., Usui, H., Iwanari, D., & Sakaguchi, H.(2017). Effect of mechanical pre-lithiation on electrochemical performance of silicon

negative electrode for lithium-ion batteries. Journal of The Electrochemical Society,164(7), A1651-A1654. doi: 10.1149/2.1361707jes

Forney, M. W., Ganter, M. J., Staub, J. W., Ridgley, R. D., & Landi, B. J. (2013). Prelithiation of silicon-carbon nanotube anodes for lithium ion

batteries by stabilized lithium metal powder (SLMP). Nano letters, 13(9), 4158-4163. doi:10.1021/nl401776d

Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wågberg, L., et al. (2013). Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2(1), 138-145. doi: 10.1016/j.nanoen.2012.08.008

Kasavajjula, U., Wang, C., & Appleby, A. J. (2007).Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of

Power Sources, 163(2), 1003-1039. doi: 10.1016/j.jpowsour.2006.09.084

Kennedy, B., Patterson, D., & Camilleri, S. (2000).Use of lithium-ion batteries in electric vehicles.Journal of Power Sources, 90(2), 156-162. doi:

1016/S0378-7753(00)00402-X

Liu, N., Li, W., Pasta, M., & Cui, Y. (2014).Nanomaterials for electrochemical energy storage. Frontiers of Physics, 9(3), 323-350.

doi: 10.1007/s11467-013-0408-7

Liu, N., Lu, Z., Zhao, J., McDowell, M. T., Lee, H.W., Zhao, W., et al. (2014). A pomegranate-inspired nanoscale design for large-volume-

change lithium battery anodes. Nature Nanotechnology, 9(3), 187-192. doi: 10.1038/nnano.2014.6

Liu, Y., Lin, D., Yuen, P. Y., Liu, K., Xie, J.,Dauskardt, R. H., et al. (2017). An artificial solid electrolyte interphase with high Li-ion

conductivity, mechanical strength, and flexibility for stable lithium metal anodes.Advanced Materials, 29(10). doi: 10.1002/

adma.201605531

Son, I. H., Hwan Park, J., Kwon, S., Park, S.,Rummeli, M. H., Bachmatiuk, A., et al. (2015).Silicon carbide-free graphene growth on

silicon for lithium-ion battery with high volumetric energy density. Nature Communications, 6, 7393. doi: 10.1038/ncomms8393

Stubblefield, C. B., & Bach, R. O. (1972). Solubility of lithium fluoride in water. Journal of Chemical and Engineering Data, 17(4), 491-

doi: 10.1021/je60055a017

Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367. doi: 10.1038/

Vajo, J. J., Mertens, F., Ahn, C. C., Bowman, R. C.,& Fultz, B. (2004). Altering hydrogen storage properties by hydride destabilization through

alloy formation: LiH and MgH2 destabilized with Si. The Journal of Physical Chemistry B,108(37), 13977-13983. doi: 10.1021/jp040060

Wang, Y., Li, H., He, P., Hosono, E., & Zhou, H.(2010). Nano active materials for lithium-ion batteries. Nanoscale, 2(8), 1294-1305. doi:

1039/C0NR00068J

Wang, Z., Fu, Y., Zhang, Z., Yuan, S., Amine, K., Battaglia, V., et al. (2014). Application of stabilized lithium metal powder (SLMP®

) in graphite anode - A high efficient prelithiation method for lithium-ion batteries. Journal of Power Sources, 260, 57-61. doi: 10.1016/j.

jpowsour.2014.02.112

Wilke, G. (2003). Fifty years of Ziegler catalysts: consequences and development of an invention. Angewandte Chemie International

Edition, 42(41), 5000-5008. doi: 10.1002/anie.200330056

Wu, H., & Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7(5), 414-429. doi: 10.1016/j.

nantod.2012.08.004

Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., et al. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting

hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4,1943. doi: 10.1038/ncomms2941

Wu, X., Wang, Z., Chen, L., & Huang, X. (2003). Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochemistry Communi-

cations, 5(11), 935-939. doi: 10.1016/j.elecom.2003.09.001

Yin, Y., Wan, L., & Guo, Y. (2012). Silicon-based nanomaterials for lithium-ion batteries. Chinese science bulletin, 57(32), 4104-4110.

doi: 10.1007/s11434-012-5017-2

Yom, J. H., Seong, I. W., Cho, S. M., & Yoon, W. Y. (2018). Optimization of heat treatment conditions for fabricating pre-lithiated silicon

monoxide as an anode material for lithium-ion batteries. Journal of The Electrochemical Society, 165(3), A603-A608. doi: 10.1149/2.

jes

Zhao, J., Lu, Z., Liu, N., Lee, H. W., McDowell, M. T., & Cui, Y. (2014). Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles

as high-capacity prelithiation reagents. Nature Communications, 5, 5088. doi: 10.1038/ncomms6088

Zhao, J., Lu, Z., Wang, H., Liu, W., Lee, H. W., Yan, K., et al. (2015). Artificial solid electrolyte interphase-protected LixSi nanoparticles: an

efficient and stable prelithiation reagent for lithium-ion batteries. Journal of the American Chemical Society, 137(26), 8372-8375. doi:

1021/jacs.5b04526

Zhao, J., Zhou, G., Yan, K., Xie, J., Li, Y., Liao, L., et al. (2017a). Air-stable and freestanding lithium alloy/graphene foil as an alternative to

lithium metal anodes. Nature Nanotechnology,12(10), 993-999. doi: 10.1038/nnano.2017.129

Zhao, J., Liao, L., Shi, F., Lei, T., Chen, G., Pei, A., et al. (2017b). Surface fluorination of reactive battery anode materials for enhanced stability.

Journal of the American Chemical Society,139(33), 11550-11558. doi: 10.1021/jacs.7b05251

Zhao, J., Sun, J., Pei, A., Zhou, G., Yan, K., Liu, Y., et al. (2018). A general prelithiation approach for group IV elements and corresponding

oxides. Energy Storage Materials, 10, 275-281.doi: 10.1016/j.ensm.2017.06.013

Downloads

Published

2022-12-08

How to Cite

Kamma, N. ., Kanaphan, . Y. ., Buakeaw, . S. ., Kaewmala, S. ., Chaikawang , . C. ., Nash, . J. ., Srilomsak, S. ., & Meethong, N. . (2022). A Polymeric Coating on Prelithiated Silicon-Based Nanoparticles for High Capacity Anodes used in Li-ion Batteries. Suan Sunandha Science and Technology Journal, 7(2), 30–36. retrieved from https://li02.tci-thaijo.org/index.php/ssstj/article/view/370

Issue

Section

Research Articles