A Polymeric Coating on Prelithiated Silicon-Based Nanoparticles for High Capacity Anodes used in Li-ion Batteries
Keywords:
Lithium ion batteries, Silicon, PrelithiationAbstract
Silicon is a promising candidate anode material for lithium ion batteries due to its high theoretical specific capacity of 4,200 mAh g -1 and low discharge potential. However, a high irreversible capacity loss due to a solid electrolyte interphase formation on the surface of Si anodes during the 1st cycle limits its practical applications. Prelithiation is considered an attractive method that can be used to compensate for the active lithium losses during the 1 st cycle. Surface oxidation to Li2O when the material comes into contact with moisture and oxygen during electrode fabrication is a main obstacle, leading to poor electrochemical stability. In this work the surface stability of prelithiated Si-based nanoparticles was modified via a polymeric nano-coating method. The results demonstrate
that coating with 1-fluorooctane is an effective strategy to mitigate irreversible capacity loss and provide electrochemical stability for high performance next generation lithium ion batteries.
References
Aurbach, D. (1994). The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable
‘Rocking-Chair’ type batteries. Journal of The Electrochemical Society, 141(3), 603. doi:10.1149/1.2054777
Beaulieu, L., Eberman, K., Turner, R., Krause, L., & Dahn, J. (2001). Colossal reversible volume changes in lithium alloys. Electrochemical and
Solid-State Letters, 4(9), A137-A140. doi:10.1149/1.1388178
DiLeo, R. A., Ganter, M. J., Thone, M. N., Forney, M. W., Staub, J. W., Rogers, R. E., et al. (2013). Balanced approach to safety of high
capacity silicon–germanium–carbon nanotube free-standing lithium ion battery anodes. Nano Energy, 2(2), 268-275. doi: 10.1016/j.nanoen.
09.007
Domi, Y., Usui, H., Iwanari, D., & Sakaguchi, H.(2017). Effect of mechanical pre-lithiation on electrochemical performance of silicon
negative electrode for lithium-ion batteries. Journal of The Electrochemical Society,164(7), A1651-A1654. doi: 10.1149/2.1361707jes
Forney, M. W., Ganter, M. J., Staub, J. W., Ridgley, R. D., & Landi, B. J. (2013). Prelithiation of silicon-carbon nanotube anodes for lithium ion
batteries by stabilized lithium metal powder (SLMP). Nano letters, 13(9), 4158-4163. doi:10.1021/nl401776d
Hu, L., Liu, N., Eskilsson, M., Zheng, G., McDonough, J., Wågberg, L., et al. (2013). Silicon-conductive nanopaper for Li-ion batteries. Nano Energy, 2(1), 138-145. doi: 10.1016/j.nanoen.2012.08.008
Kasavajjula, U., Wang, C., & Appleby, A. J. (2007).Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. Journal of
Power Sources, 163(2), 1003-1039. doi: 10.1016/j.jpowsour.2006.09.084
Kennedy, B., Patterson, D., & Camilleri, S. (2000).Use of lithium-ion batteries in electric vehicles.Journal of Power Sources, 90(2), 156-162. doi:
1016/S0378-7753(00)00402-X
Liu, N., Li, W., Pasta, M., & Cui, Y. (2014).Nanomaterials for electrochemical energy storage. Frontiers of Physics, 9(3), 323-350.
doi: 10.1007/s11467-013-0408-7
Liu, N., Lu, Z., Zhao, J., McDowell, M. T., Lee, H.W., Zhao, W., et al. (2014). A pomegranate-inspired nanoscale design for large-volume-
change lithium battery anodes. Nature Nanotechnology, 9(3), 187-192. doi: 10.1038/nnano.2014.6
Liu, Y., Lin, D., Yuen, P. Y., Liu, K., Xie, J.,Dauskardt, R. H., et al. (2017). An artificial solid electrolyte interphase with high Li-ion
conductivity, mechanical strength, and flexibility for stable lithium metal anodes.Advanced Materials, 29(10). doi: 10.1002/
adma.201605531
Son, I. H., Hwan Park, J., Kwon, S., Park, S.,Rummeli, M. H., Bachmatiuk, A., et al. (2015).Silicon carbide-free graphene growth on
silicon for lithium-ion battery with high volumetric energy density. Nature Communications, 6, 7393. doi: 10.1038/ncomms8393
Stubblefield, C. B., & Bach, R. O. (1972). Solubility of lithium fluoride in water. Journal of Chemical and Engineering Data, 17(4), 491-
doi: 10.1021/je60055a017
Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367. doi: 10.1038/
Vajo, J. J., Mertens, F., Ahn, C. C., Bowman, R. C.,& Fultz, B. (2004). Altering hydrogen storage properties by hydride destabilization through
alloy formation: LiH and MgH2 destabilized with Si. The Journal of Physical Chemistry B,108(37), 13977-13983. doi: 10.1021/jp040060
Wang, Y., Li, H., He, P., Hosono, E., & Zhou, H.(2010). Nano active materials for lithium-ion batteries. Nanoscale, 2(8), 1294-1305. doi:
1039/C0NR00068J
Wang, Z., Fu, Y., Zhang, Z., Yuan, S., Amine, K., Battaglia, V., et al. (2014). Application of stabilized lithium metal powder (SLMP®
) in graphite anode - A high efficient prelithiation method for lithium-ion batteries. Journal of Power Sources, 260, 57-61. doi: 10.1016/j.
jpowsour.2014.02.112
Wilke, G. (2003). Fifty years of Ziegler catalysts: consequences and development of an invention. Angewandte Chemie International
Edition, 42(41), 5000-5008. doi: 10.1002/anie.200330056
Wu, H., & Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7(5), 414-429. doi: 10.1016/j.
nantod.2012.08.004
Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., et al. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting
hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4,1943. doi: 10.1038/ncomms2941
Wu, X., Wang, Z., Chen, L., & Huang, X. (2003). Ag-enhanced SEI formation on Si particles for lithium batteries. Electrochemistry Communi-
cations, 5(11), 935-939. doi: 10.1016/j.elecom.2003.09.001
Yin, Y., Wan, L., & Guo, Y. (2012). Silicon-based nanomaterials for lithium-ion batteries. Chinese science bulletin, 57(32), 4104-4110.
doi: 10.1007/s11434-012-5017-2
Yom, J. H., Seong, I. W., Cho, S. M., & Yoon, W. Y. (2018). Optimization of heat treatment conditions for fabricating pre-lithiated silicon
monoxide as an anode material for lithium-ion batteries. Journal of The Electrochemical Society, 165(3), A603-A608. doi: 10.1149/2.
jes
Zhao, J., Lu, Z., Liu, N., Lee, H. W., McDowell, M. T., & Cui, Y. (2014). Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles
as high-capacity prelithiation reagents. Nature Communications, 5, 5088. doi: 10.1038/ncomms6088
Zhao, J., Lu, Z., Wang, H., Liu, W., Lee, H. W., Yan, K., et al. (2015). Artificial solid electrolyte interphase-protected LixSi nanoparticles: an
efficient and stable prelithiation reagent for lithium-ion batteries. Journal of the American Chemical Society, 137(26), 8372-8375. doi:
1021/jacs.5b04526
Zhao, J., Zhou, G., Yan, K., Xie, J., Li, Y., Liao, L., et al. (2017a). Air-stable and freestanding lithium alloy/graphene foil as an alternative to
lithium metal anodes. Nature Nanotechnology,12(10), 993-999. doi: 10.1038/nnano.2017.129
Zhao, J., Liao, L., Shi, F., Lei, T., Chen, G., Pei, A., et al. (2017b). Surface fluorination of reactive battery anode materials for enhanced stability.
Journal of the American Chemical Society,139(33), 11550-11558. doi: 10.1021/jacs.7b05251
Zhao, J., Sun, J., Pei, A., Zhou, G., Yan, K., Liu, Y., et al. (2018). A general prelithiation approach for group IV elements and corresponding
oxides. Energy Storage Materials, 10, 275-281.doi: 10.1016/j.ensm.2017.06.013