Modification of Leaf Blower-vac (Grizzly ELS 2500/8) for Sampling Arthropods in Watermelon (Citrullus lanatus Thunb.) Field
Keywords:
Suction enclosure, Suction duration, Suction samplingAbstract
Grizzly ELS 2500/8 blower-vac was remodeled for arthropod suction sampling and possibly as a non-chemical pest management tool using readily available materials. With an installed intake nozzle (area 0.0020 m2), the modified sampler was used in conjunction with a sampling enclosure (area 0.0707 m2) for sampling arthropods associated with watermelon across 20 samples with 6 sub-samples each using 120 and 20 seconds sampling duration, respectively. Results indicated that overall, 427 individuals were collected across 10 arthropod orders and that about ¾ of the samples were extracted within the 1st sub-sampling duration. Overall, the efficiency and effectiveness of the modified machine were attributed to its lightweight, smaller intake nozzle diameter, high proportion of arthropods extracted vis-à-vis sampling duration, and easier constructability vis-à-vis previously reported ones. Additionally, cost implication was cheaper than the cost of many conventional suction samplers, particularly, the popular Dietrick vacuum (D-vac). Hence, it is recommended for use as a suitable alternative, particularly, by researchers and farmers in developing countries who may not be able to afford other more expensive suction machines.
References
Arida, G., & Heong, K. (1992). Blower-Vac: A new suction apparatus for sampling rice arthropods. International Rice Research Newsletter, 17, 30-31.
Arnold, A. J., Needham, P. H., & Stevenson, J. H. (1973). A self-powered portable insect suction sampler and its use to assess the effects of azinphos methyl and endosulfan on blossom beetle populations on oil seed rape. Annals of Applied Biology, 75, 229-233. doi:10.1111/j.
7348.1973.tb07302.x
Bell, J. R., Wheater, C. P., Henderson, R., & Cullen, W. R. (2002). Testing the efficiency of suction samplers (G-vacs) on spiders: The effect of increasing nozzle size and suction time. In S. Toft, & N. Scharff (Eds.), European Arachnology 2000 (pp. 285-290). Aarhus, Denmark: Aarhus University Press.
Boiteau, G., Misener, G. C., Singh, R. P., & Bernard, G. (1992). Evaluation of a vacuum collector for insect pest control in potato. American Potato Journal, 69, 157-166. doi:10.1007/BF02856547
Buffington, M. L., & Redak, R. A. (1998). A comparison of vacuum sampling versus sweep-netting for arthropod biodiversity measurements in California coastal sage scrub. Journal of Insect Conservation, 2, 99-106. doi:10.1023/A:1009653021706
Cherrill, A. (2015). Suction sampling of grassland invertebrates using the G-vac: Quantifying and avoiding peripheral suction effects. European Journal of Entomology, 112(3), 520-524. doi:10.14411/eje.2015.058
Domingo, I., & Schoenly, K. G. (1998). An improved suction apparatus for sampling invertebrate communities in flooded rice. International Rice Research Notes, 23, 38-39.
Elliott, N. C., Tao, F. L., Fuentes-Granados, R., Giles, K. L., Elliott, D. T., Greenstone, M. H., … Royer, T. A. (2006). D-vac sampling for predatory arthropods in winter wheat. Biological Control, 38, 325-330. doi:10.1016/j.biocontrol.2006.04.017
Grootaert, P., Pollet, M., Dekoninck, W., & van Achterberg, C. (2010). Sampling insects: General techniques, strategies and remarks. In J.
Eymann, J. Degreef, Ch. Hāuser, J. C. Monje, Y. Samyn, & D. VandenSpiegel (Eds.), Manual on field recording techniques and protocols for all taxa biodiversity inventories and monitoring (pp. 377-399). Belgium: Abc Taxa.
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1-9.
Hand, S. C. (1986). The capture efficiency of the Dietrick vacuum insect net for aphids on grasses and cereals. Annals of Applied Biology, 108, 233-241. doi:10.1111/j.1744-7348.1986.tb07645.x
Harper, C. A., & Guynn, D. C. (1998). A terrestrial vacuum sampler for macroinvertebrates. Wildlife Society Bulletin, 26(2), 302-306.
Holtkamp, R. H., & Thompson, J. I. (1985). A lightweight, self-contained insect suction sampler. Australian Journal of Entomology, 24, 301-302. doi:10.1111/j.1440-6055.1985.tb00247.x
Lima, C. H. O., Sarmento, R. A., Rosado, J. F., Silveira, M. C. A. C., Santos, G. R., Pedro-Neto, M., … Picanço, M. C. (2014). Efficiency and economic feasibility of pest control systems in watermelon cropping. Journal of Economic Entomology, 107, 1118-1126. doi:10.1603/EC13512
Macleod, A., Wratten, S. D., & Harwood, R. W. J. (1994). The efficiency of a new lightweight suction sampler for sampling aphids and their predators in arable land. Annals of Applied Biology, 124, 11-17. doi:10.1111/j.1744.7348.1994.tb04110.x
Munyaneza, J. E., Crosslin, J. M., Upton, J. E., & Buchman, J. L. (2010). Incidence of the beet leafhopper-transmitted virescence agent phytoplasma in local populations of the beet leafhopper, Circulifer tenellus, in Washington State. Journal of Insect Science, 10, 1-10. doi:10.1673/031.010.1801
Okrikata, E., & Ogunwolu, E. O. (2019). Determination of the critical period of Cyper-diforce® treatment against arthropod fauna and productivity of watermelon. Iraqi Journal of Science, 60(9), 1904-1919. doi:10.24996/ijs.2019. 60.9.3
Okrikata, E., Ogunwolu, E. O., & Odiaka, N. I. (2020). Effect of Cyper-diforce® application and variety on major insect pests of watermelon in the Southern Guinea Savanna of Nigeria. Jordan Journal of Biological Sciences, 13, 107-115.
Okrikata, E., Ogunwolu, E. O., & Ukwela, M. U. (2019). Efficiency and economic viability of neem seed oil emulsion and Cyper-diforce® insecticides in watermelon production within the Nigerian Southern Guinea Savanna zone. Journal of Crop Protection, 8, 81-101.
doi:10.13140/RG.2.2.20031.36001
Okrikata, E., & Yusuf, O. A. (2016). Diversity and abundance of insects in Wukari, Taraba State, Nigeria. International Biological and Biomedical Journal, 2, 156-166.
Reed, J. T., Adams, L. C., & Abel, C. A. (2010). Comparison of three insect sampling methods in sweet potato foliage in Mississippi. Journal of Entomological Science, 45(2), 111-128. doi:10.18474/0749-8004-45.2.111
Sanders, D., & Entling, M. H. (2011). Large variation of suction sampling efficiency depending on arthropod groups, species traits and habitat properties. Entomologia Experimentalis et Applicata, 138, 234-243. doi:10.1111/j.1570-7458.2020. 01094.x
Stewart, A. J. A., & Wright, A. F. (1995). A new inexpensive suction apparatus for sampling arthropods in grasslands. Ecological Entomology, 20, 98-102. doi:10.1111/j.1365-2311.1995.tb00434.x
Sunderland, K. D., De Snoo, G. R., Dinter, A., Hance, T., Helenius, J., Jepson, P., … Ulber, B. (1995). Density estimation for invertebrate predators in agroecosystems. In S. Toft, & W. Riedel (Eds.), Arthropod natural enemies in arable land I: Density, spatial heterogeneity and dispersal (pp. 133-162). Aarhus, Denmark: Aarhus University Press.
Thomas, D. B. (2012). Comparison of insect vacuums for sampling Asian citrus psyllid (Homoptera: Psyllidae) on citrus trees. Southwestern Entomologist, 37, 55-60. doi:10.3958/059.037.0107
Zou, Y., van Telgen, M. D., Chen, J., Xiao, H., de Kraker, J., Bianchi, F. J., & van der Werf, W. (2016). Modification and application of a leaf blower-vac for field sampling of arthropods. Journal of Visualized Experiments, 114, e54655. doi:10.3791/54655