องค์ประกอบทางเคมีและโครงสร้างโปรตีนของหนอนนก (Tenebrio molitor) แต่ละระยะการเจริญเติบโต เพื่อการพัฒนาเป็นแหล่งอาหารทางเลือกในอนาคต
Main Article Content
บทคัดย่อ
การศึกษานี้มีวัตถุประสงค์เพื่อวิเคราะห์องค์ประกอบทางเคมีและโครงสร้างโปรตีนของหนอนนก (Tenebrio molitor) ในแต่ละระยะการเจริญเติบโต ได้แก่ ตัวอ่อน (อายุ 12 สัปดาห์) ดักแด้ (อายุ 1 วัน) และตัวเต็มวัย (อายุ 10-15 วัน) เพื่อประเมินศักยภาพในการพัฒนาเป็นแหล่งอาหารทางเลือก ผลการศึกษาพบว่า ระยะดักแด้มีปริมาณโปรตีนสูงสุด (54.38 %) และมีโปรตีนกล้ามเนื้อสำคัญ เช่น Tropomyosin, Troponin และ Actin การวิเคราะห์ด้วย SDS-PAGE แสดงให้เห็นการสะสมโปรตีนที่มีน้ำหนักโมเลกุลขนาดเล็ก (10-20 kDa) ในระยะตัวเต็มวัย ซึ่งสัมพันธ์กับการเพิ่มขึ้นของไคติน (23.26 %) และการลดลงของไขมัน (10.41 %) การวิเคราะห์กรดไขมันพบว่า กรดโอเลอิก (C18:1n9c) เป็นกรดไขมันหลัก (46.28-49.54 %) รองลงมาคือกรดไลโนเลอิก (C18:2n6c) (19.84-24.86 %) ในด้านแร่ธาตุพบการเพิ่มขึ้นของฟอสฟอรัสและกำมะถันในระยะตัวเต็มวัย (36.465 % และ 26.716 % ตามลำดับ) ขณะที่แมกนีเซียมและแคลเซียมลดลงอย่างมีนัยสำคัญ การวิเคราะห์โครงสร้างโปรตีนด้วย FTIR และ PCA แสดงการเปลี่ยนแปลงโครงสร้างทุติยภูมิที่ชัดเจน โดย ß-sheet เป็นโครงสร้างหลัก (51-55 %) ผลการศึกษานี้แสดงให้เห็นว่าหนอนนกมีศักยภาพในการพัฒนาเป็นแหล่งอาหารทางเลือกที่มีคุณค่าทางโภชนาการสูง โดยระยะการเจริญเติบโตที่แตกต่างกันมีผลต่อองค์ประกอบทางเคมีและโครงสร้างโปรตีน
Article Details
บทความที่ได้รับการตีพิมพ์เป็นลิขสิทธิ์ของวารสารเทคโนโลยีคหกรรมศาสตร์และนวัตกรรม มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรี ข้อความที่ปรากฏในบทความแต่ละเรื่องในวารสารวิชาการเล่มนี้เป็นความคิดเห็นส่วนตัวของผู้เขียนแต่ละท่านไม่เกี่ยวข้องกับมหาวิทยาลัยเทคโนโลยีราชมงคลธัญบุรีและคณาจารย์ท่านอื่นๆในมหาวิทยาลัยฯ แต่อย่างใด ความรับผิดชอบองค์ประกอบทั้งหมดของบทความแต่ละเรื่องเป็นของผู้เขียนแต่ละท่าน หากมีความผิดพลาดใดๆ ผู้เขียนแต่ละท่านจะรับผิดชอบบทความของตนเองแต่ผู้เดียว
References
ณัฏฐา วิศิษฎ์ยากร และธนศักดิ์ พื้นไธสงค์. 2548. หนอนนกทางเลือกสำหรับอาหารสัตว์. ศูนย์บริการวิชาการ, 3(2), 9-15.
อภินันท์ สุวรรณรักษ์. (2543). หนอนนก อาหารสุขภาพสัตว์. เทคโนโลยีชาวบ้าน, 12(29), 63–65.
AOAC International. (2016). Official Methods of Analysis of AOAC International. (AOAC: Washington, DC, USA, 2016; ISBN 0935584870. Available online: https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-20th-edition-2016?product_id=1937367 (accessed on 25 January 2024)
Arrese, E.L., Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology, 55, 207-25. doi : 10.1146/annurev-ento-112408-085356
Azagoh, C., Ducept, F., Garcia, R., Rakotozafy, L., Cuvelier, M.-E., Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24-31. doi : 10.1016/j.foodres.2016.06.010
Barker, D., Fitzpatrick, M.P., & Dierenfeld, E.S. (1998). Nutrient composition of selected whole invertebrates. Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association, 17(2), 123-134. doi : 10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B
Bawa, M., Songsermpong, S., Kaewtapee, C., Chanput, W. (2020). Effect of diet on the growth performance, feed conversion, and nutrient content of the house cricket. Journal of Insect Science, 20, 1-10. doi : 10.1093/jisesa/ieaa014
Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C.C., Paoletti, M.G., Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. doi : 10.1111/1541-4337.12014
Bulet, P., Hetru, C., Dimarcq, J.L., Hoffmann, D. (1999). Antimicrobial peptides in insects; structure and function. Developmental and Comparative Immunology, (4-5), 329-44. doi : 10.1016/s0145-305x(99)00015-4
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA). (2021). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(1), 6343. doi : 10.2903/j.efsa.2021.6343
Fadlaoui, S., El Asri, O., Mohammed, L., Sihame, A., Omari, A., Melhaoui, M. (2019). Isolation and characterization of chitin from shells of the freshwater crab Potamon algeriense. Progress on Chemistry and Application of Chitin and its Derivatives, (24), 23-35. doi : 10.15259/PCACD.24.002
Feder, M.E., Hofmann, G.E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual Review of Physiology, 61, 243-82. doi : 10.1146/annurev. physiol.61.1.243
Feng, Y., Chen, X.M., Zhao, M., He, Z., Sun, L., Wang, C.Y., Ding, W.F. (2018). Edible insects in China: Utilization and prospects. Insect Science , 25(2), 184-198. doi : 10.1111/1744-7917.12449
Finke, M.D. (2013). Complete nutrient content of four species of feeder insects. Zoo Biology, 32(1), 27-36. doi: 10.1002/zoo.21012
Finke, M.D. (2013). Estimate of chitin in raw whole insects. Zoo Biology, 26(2), 105–115. doi : 10.1002/zoo.20123
Folch, J., Lees, M., Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. doi : 10.1016/S0021-9258(18)64849-5
Ghosh, S., Lee, S.M., Jung, C., Meyer-Rochow, V.B. (2017). Nutritional composition of five commercial edible insects in South Korea. Journal of Asia-Pacific Entomology, 20, 686–694. doi : 10.1016/j.aspen.2017.04.003
Jayanthi, K., Lamichhane, T.N., Roy, V., Zhao, F., Navrotsky, A., Moyer, B.A., Paranthaman, M.P. (2023). Integrated circular economy model system for direct lithium extraction: from minerals to batteries utilizing aluminum hydroxide. ACS Applied Materials & Interfaces, 15(50), 58984-58993. doi : 10.1021/acsami.3c12070
Jongema, Y. (2017). List of edible insects of the world. Wageningen University & Research. https://www.wur.nl/en/Research-Results/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm (accessed 29 April 2025)
Kim, T.K., Yong, H.I., Kim, Y.B., Kim, H.W., Choi, Y.S. (2019). Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Science of Animal Resources, 39(4), 521-540. doi : 10.5851/kosfa.2019.e53
Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. doi : 10.1016/j.anifeedsci.2014.07.008
Megido, R.C., Sablon, L., Geuens, M., Brostaux, Y., Alabi, T., Blecker, C., Drugmand, D., Haubruge, E. and Francis, F. (2014). Edible insects acceptance by Belgium consumers: promising attitude for entomophagy development. Journal of Sensory Studies, 29, 14-20. doi : 10.1111/joss.12077
Merzendorfer, H., & Zimoch, L. (2003). Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. Journal of Experimental Biology, 206(24), 4393-4412. doi : 10.1242/jeb.00709
Mopuri, R., Kalyesubula, M., Rosov, A., Edery, N., Moallem, U., & Dvir, H. (2021). Improved Folch method for liver-fat quantification. Frontiers in Veterinary Science, 7, 594853. doi : 10.3389/fvets.2020.594853
Morrison, W.R., & Smith, L.M. (1964). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. Journal of Lipid Research, 5(4), 600-608. doi : 10.1016/S0022-2275(20)40190-7
Noyens, I., Schoeters, F., Van Peer, M., Berrens, S., Goossens, S., & Van Miert, S. (2023). The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams. Scientific Reports, 13(1), 11604. doi : 10.1038/s41598-023-38747-w
Oonincx, D.G., de Boer, I.J. (2012). Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment. PLOS ONE, 7(12), e51145. doi : 10.1371/journal.pone.0051145
Oonincx, D.G., van Itterbeeck, J., Heetkamp, M.J.W., van den Brand, H., van Loon, J.J.A., van Huis, A. (2010). An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLOS ONE, 5(12), e14445. doi : 10.1371/journal.pone.0014445.
Poelaert, C., Francis, F., Alabi, T., Megido, R.C., Crahay, B., Bindelle, J., & Beckers, Y. (2018). Protein value of two insects, subjected to various heat treatments, using growing rats and the protein digestibility-corrected amino acid score. Journal of Insects as Food and Feed, 4(2), 77-87. doi : 10.3920/JIFF2017.0003
Rong, J., Lin, Y., Sui, Z., Wang, S., Wei, X., Xiao, J., & Huang, D. (2019). Amorphous calcium phosphate in the pupal cuticle of Bactrocera dorsalis Hendel (Diptera: Tephritidae): A new discovery for reconsidering the mineralization of the insect cuticle. Journal of Insect Physiology, 119, 103964. doi : 10.1016/j.jinsphys.2019.103964
Rumpold, B.A., Oliver, K.S. (2013). Nutritional Composition and Safety Aspects of Edible Insects. Molecular Nutrition & Food Research, 57(5), 802–23. doi : 10.1002/mnfr.201200735
Simopoulos, A.P. (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother, 56(8), 365-79. doi : 10.1016/s0753-3322(02)00253-6
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P., De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594-2600. doi : 10.1002/jsfa.8081
Stull, V.J. (2021). Impacts of Insect Consumption on Human Health. Journal of Insects as Food and Feed, 7, 695–713. doi : 10.3920/JIFF2020.0115
Stull, V.J., Weir, T.L. (2023). Chitin and omega-3 fatty acids in edible insects have underexplored benefits for the gut microbiome and human health. Nature Food, 4(4), 283-287. doi : 10.1038/s43016-023-00728-7.
Tan, H.S.G., Fischer, A.R.H., Tinchan, P., Stieger, M., Steenbekkers, L.P.A., van Trijp, H.C.M. (2015). Insects as food: Exploring cultural exposure and individual experience as determinants of acceptance. Food Quality and Preference, 42, 78–89. doi : 10.1016/j.foodqual.2015.01.013
Tan, T., Zimmermann, M., Reichert, A.S. (2016). Controlling quality and amount of mitochondria by mitophagy: insights into the role of ubiquitination and deubiquitination. Journal of Biological Chemistry, 397(7), 637-47. doi : 10.1515/hsz-2016-0125
Tzompa-Sosa, D.A., Yi, L., van Valenberg, H.J., van Boekel, M.A., Lakemond, C.M. (2014). Insect lipid profile: aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087-1094. doi : 10.1016/j.foodres.2014.05.052
van Broekhoven, S., Oonincx, D.G., van Huis, A., van Loon, J.J. (2015). Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. Journal of Insect Physiology, 73, 1-10. doi : 10.1016/j.jinsphys.2014.12.005
van Huis, A. Potential of insects as food and feed in assuring food security. (2013). Annual Review of Entomology, 58, 563-83. doi : 10.1146/annurev-ento-120811-153704
Van Huis, A., Dicke, M., van Loon, J.J.A. (2015). Insects to Feed the World. Journal of Insects as Food and Feed, 1, 3-5. doi : /10.3920/JIFF2015.x002
Vorland, C.J., Stremke, E.R., Moorthi, R.N., Hill Gallant, K.M. (2017). Effects of Excessive Dietary Phosphorus Intake on Bone Health. Current Osteoporosis Reports, 15(5), 473-482. doi : 10.1007/s11914-017-0398-4.
Yi, L., Lakemond, C.M., Sagis, L.M., Eisner-Schadler, V., van Huis, A., van Boekel, M.A. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(4), 3341-3348. doi : 10.1016/j.foodchem.2013.05.115
Yu, X., He, Q., & Wang, D. (2021). Dynamic analysis of major components in the different developmental stages of Tenebrio molitor. Frontiers in Nutrition, 8, 689746. doi : 10.3389/fnut.2021.689746
Zhao, X., Vázquez-Gutiérrez, J.L., Johansson, D.P., Landberg, R., Langton, M. (2016). Yellow Mealworm Protein for Food Purposes - Extraction and Functional Properties. PLOS ONE, 11(2), 147791. doi : 10.1371/
journal.pone.0147791
Zielińska, E., Baraniak, B., Karaś, M., Rybczyńska, K., & Jakubczyk, A. (2015). Selected species of edible insects as a source of nutrient composition and in vitro cytotoxicity evaluation. Food Research International, 77, 460–466. doi : 10.1016/j.foodres.2015.09.008