Forecasting the Monthly Average of Particulate Matter 2.5 in Chiang Mai Province using the Classical Decomposition Method

Authors

  • Vadhana ๋Jayathavaj Faculty of Allied Health Sciences, Pathumthani University

DOI:

https://doi.org/10.57260/stc.2024.800

Keywords:

Forecasting, Particulate matter 2.5, Classical decomposition method, Chaing Mai

Abstract

Time series forecasting using the classical decomposition method can be predicted 12 months ahead, this method was chosen to forecast the monthly average of particulate matter no larger than 2.5 microns (PM2.5) in Chiang Mai Province. The data was collected from a permanent measuring station in Mueang District, Chiang Mai Province, City Hall, Mueang District (35T) for the years 2020, 2021, 2022, and January to June 2023. The four decomposition methods—the additive model and the three multiplicative models—the simple average method, ratio to trend, and centered moving average—were applied to PM2.5 data. The results showed that when using the monthly average data for the years 2020, 2021, and 2022 to develop the model, the accuracy of the model when compared with 36-month observational values, the additive model has the lowest mean absolute percentage error (MAPE) of 7.06, which is within the criteria for highly precise forecasting. But when the monthly forecast values for the year 2023 are compared with the observation values from January to June 2023, there have already been abnormally high monthly average events in February, March, and April, the multiplicative model with the simple average method had the lowest MAPE at 28.72. The forecast values for July–December will have a monthly average PM2.5 between 17 and 26 micrograms per cubic meter.

Author Biography

Vadhana ๋Jayathavaj, Faculty of Allied Health Sciences, Pathumthani University

-

References

กระทรวงสาธารณสุข. (2566). จำนวนป่วย จำแนกรายกลุ่มโรค และรายโรค รายเดือนด้วยโรคที่เกี่ยวข้องกับมลพิษทางอากาศ. สืบค้นจาก https://hdcservice.moph.go.th/hdc/reports/report.php?&cat_id=9c647c1f31ac73f4396c2cf987e7448a&id=5968980caf87d4518aa9f0263a9299c6

กองจัดการคุณภาพอากาศและเสียง กรมควบคุมมลพิษ. (2566). สรุปข้อมูลรายเดือน (สถานี) 2566, 2565, 2564. 2563. สืบค้นจาก http://air4thai.pcd.go.th/webV2/download.php

ประชาชาติธุรกิจ ออนไลน์. (2566). เผาป่าเหนือ 5.8 แสนไร่ ชาวบ้าน 4 พันคนแลกเก็บ “เห็ดถอบ”. สืบค้นจาก https://www.prachachat.net/local-economy/news-1242280

IQAir. (2566). ดัชนีคุณภาพอากาศ (AQI) และมลพิษทางอากาศ PM2.5 ใน เชียงใหม่. สืบค้นจาก https://www.iqair.com/th/thailand/chiang-mai

Andrés, D. (2023). Error Metrics for Time Series Forecasting. Retrieved from https://mlpills .dev/time-series/error-metrics-for-time-series-forecasting/

Chan, B. (2015a). Classical Additive Decomposition. Retrieved from https://www.youtube. com/watch?v=YA8MJFdk-C4

Chan, B. (2015b). Classical Multiplicative Decomposition. Retrieved from https://www.You tube.com/watch?v=S31b-vh0Ce0

Hikmah, N., & Kartikasari, M. D. (2022). Decomposition Method with Application of Grey Model GM(1,1) for Forecasting Seasonal Time Series. Pakistan Journal of Statistics and Operation Research, 18(2), 411-416. DOI:10.18187/pjsor.v18i2.3533

Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: principles and practice. (2nd ed.). Melbourne: OTexts.

Huang, Y., Li, J., Hao, H., Xu, L., Nicholas, S., & Wang, J. (2019). Seasonal and Monthly Patterns, Weekly Variations, and the Holiday Effect of Outpatient Visits for Type 2 Diabetes Mellitus Patients in China. International Journal of Environmental Research and Public Health, 16(15), 2653. DOI:10.3390/ijerph16152653

Lewis, C. D. (1982). Industrial and business forecasting methods. Kent: Butterworths.

Li, L. (2020). STAT481/581: Introduction to Time Series Analysis Ch3. Retrieved from https://math.unm.edu/~lil/Stat581/6-decomposition.pdf

PennState Eberly College of Science. (2023). STAT 510 Applied Time Series Analysis. Retrieved from https://online.stat.psu.edu/stat510/lesson/5/5.1

Shukla, G. K., & Trivedi, M. (2017). MSTE-002 Industrial Statistics-II Block 4 TIME SERIES MODELLING Unit-14 Seasonal Component Analysis. Indira Gandhi National Open University. Retrieved from http://egyankosh.ac.in//handle/123456789/20805

United States Agency for International Development. (2017). Malaria Seasonality and Calculating Resupply Applications of the Look-Ahead Seasonality Indices in Zambia, Burkina Faso, and Zimbabwe. Retrieved from https://www.ghsupplychain.org/sites /default/files/2017-02/MalaSeasCalcResu.pdf

Downloads

Published

2024-08-21

How to Cite

๋Jayathavaj V. (2024). Forecasting the Monthly Average of Particulate Matter 2.5 in Chiang Mai Province using the Classical Decomposition Method. Science and Technology to Community, 2(5), 16–30. https://doi.org/10.57260/stc.2024.800

Issue

Section

Research Articles