การประมาณค่าพารามิเตอร์เหมาะที่สุดในวิธีโฮลต์-วินเทอร์และการแยกส่วนประกอบด้วยอัลกอริทึมการค้นหาแบบนกกาเหว่า : การพยากรณ์ปริมาณน้ำไหลรายเดือนเข้าสู่อ่างเก็บน้ำของเขื่อนขนาดใหญ่ในภาคกลางและภาคตะวันตกของประเทศไทย

ผู้แต่ง

  • กาญจนา ทองบุญนาค คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏนครราชสีมา
  • วิระภรณ์ ไหมทอง คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏเชียงใหม่

DOI:

https://doi.org/10.57260/stc.2025.1089

คำสำคัญ:

อนุกรมเวลา, การพยากรณ์, อ่างเก็บน้ำเขื่อน, ค้นหาค่าเหมาะที่สุดแบบนกกาเหว่า

บทคัดย่อ

การศึกษานี้มีจุดมุ่งหมายเพื่อประเมินประสิทธิภาพของตัวแบบ  ซึ่งผสานอัลกอริทึม การค้นหาแบบนกกาเหว่า (Cuckoo search: CS) เข้ากับวิธีโฮลต์-วินเทอร์ (CS-HW) และวิธีการแยกส่วนประกอบ (CS-D) สำหรับการพยากรณ์ปริมาณน้ำไหลรายเดือนเข้าสู่อ่างเก็บน้ำของเขื่อนขนาดใหญ่ในภาคกลางและภาคตะวันตกของประเทศไทยจำนวน 5 แห่ง โดยเปรียบเทียบกับโปรแกรมสำเร็จรูป ได้แก่ โปรแกรม Minitab (Minitab-D) และโปรแกรม Excel (ForecastSheet-HW) ในระยะชุดข้อมูลฝึกฝน พบว่า CS-HW และ CS-D สามารถให้ค่าความคลาดเคลื่อนสัมบูรณ์เฉลี่ย (Mean absolute error: MAE) ต่ำกว่าวิธีโปรแกรมสำเร็จรูป แสดงถึงศักยภาพในการค้นหาค่าพารามิเตอร์ที่เหมาะสมยิ่งขึ้น
สำหรับระยะชุดข้อมูลทดสอบ ได้คัดเลือกตัวแบบสำหรับแต่ละอ่างเก็บน้ำ โดยใช้เกณฑ์ MAE ต่ำสุด ได้แก่ เขื่อนศรีนครินทร์ เลือก ForecastSheet-HW เขื่อนวชิราลงกรณ์ เขื่อนกระเสียว และเขื่อนทับเสลา เลือก CS-HW และเขื่อนป่าสักชลสิทธิ์ เลือก Minitab-D เมื่อใช้ตัวแบบที่ถูกคัดเลือกมาพยากรณ์ล่วงหน้า 24 เดือน พบว่า ปริมาณน้ำไหลเข้าอ่างเก็บน้ำเขื่อนทั้ง 5 แห่งมีลักษณะฤดูกาลชัดเจน โดยมีค่าสูงสุดในช่วงฤดูฝน (เดือนสิงหาคม–ตุลาคม) ผลการศึกษาชี้ให้เห็นว่าการผสานอัลกอริทึมเมตาฮิวริสติกส์อย่าง CS เข้ากับตัวแบบอนุกรมเวลาแบบดั้งเดิม สามารถช่วยเพิ่มความแม่นยำในการพยากรณ์ และเป็นประโยชน์ต่อการวางแผนบริหารจัดการทรัพยากรน้ำในอนาคต

Downloads

Download data is not yet available.

เอกสารอ้างอิง

กรมชลประทาน. (2568). ระบบฐานข้อมูลน้ำในอ่างเก็บน้ำ กรมชลประทาน. https://app.rid.go.th/reservoir/

วฐา มินเสน. (2567). เอกสารคำสอนการวิเคราะห์อนุกรมเวลา. คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่.

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. Ph.D. thesis, Politecnico di Milano, Italy.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Comput Intell, 1(4), 28–39. https://doi.org/10.1109/MCI.2006.329691

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: a new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831-4845. https://doi.org/10.1016/j.cnsns.2012.05.010

Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60-68. https://doi.org/10.1177/003754970107600201

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872. https://doi.org/10.1016/j.future.2019.02.028

Jiang, W., Wu, X., Gong, Y., Yu, W., & Zhong, X. (2020). Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193, 116779. https://doi.org/10.1016/j.energy.2019.116779

Kaewpaengjuntra, S., Somhom, S., & Saenchan, L. (2010). Electricity consumption forecasting model using hybrid Holt-Winters exponential smoothing and artificial bee colony algorithm. Information Technology Journal, 6(1), 12-17. https://ph01.tci-thaijo.org/index.php/IT_Journal/article/view/73218

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization (Technical Report No. TR06). Erciyes University, Engineering Faculty, Computer Engineering Department. https://abc.erciyes.edu.tr/pub/tr06_2005.pdf

Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In 1995 IEEE

International Conference on Neural Networks (ICNN’95) (pp. 1942–1948). IEEE. https://doi.org/10.1109/ICNN.1995.488968

Mauricio, C. C., & Ostia, C. F. (2023). Cuckoo search algorithm optimization of holt-winter method for distribution transformer load forecasting. In 9th International Conference on Control, Automation and Robotics (ICCAR) (pp. 36-42), Beijing, China. https://doi: 10.1109/ICCAR57134.2023.10151700

Minsan, W., & Minsan, P. (2023). Incorporating decomposition and the Holt-Winters method into the whale optimization algorithm for forecasting monthly government revenue in Thailand. Science & Technology Asia, 28(4), 38–53. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/250335

Minsan, P., & Minsan, W. (2024a). Decomposition and Holt-Winters techniques enhanced by whale optimization algorithm: case study of pm2.5 forecasting in 8 northern provinces of Thailand. Thai Science and Technology Journal, 32(6), 12-34. https://li01.tci-thaijo.org/index.php/tstj/article/view/261071

Minsan, W., & Minsan, P. (2024b). Decomposition and Holt-Winters enhanced by the whale optimization algorithm for forecasting the amount of water inflow into the large dam reservoirs in southern Thailand. Journal of Current Science and Technology, 14(2), article 38. https://doi.org/10.59796/jcst.V14N2.2024.38

Minsan, P., & Minsan, W. (2024c). Monthly volumes of water inflow into the large dam reservoirs in eastern Thailand forecasting by the cuckoo search optimization enhanced decomposition and Holt-Winters techniques. Thai Journal of Operations Research, 12(2), 69-89. https://ph02.tci-thaijo.org/index.php/TJOR/article/view/253542

Minsan, W., Minsan, P., & Panichkitkosolkul, W. (2024). Enhancing decomposition and Holt-Winters weekly forecasting of pm2.5 concentrations in Thailand’s eight northern provinces using the cuckoo search algorithm. Thailand Statistician, 22(4), 963–985. https://ph02.tci-thaijo.org/index.php/thaistat/article/view/256084

Minsan, P., & Minsan, W. (2025a). Forecasting rainfall in the Ping, Wang, Yom, and Nan River Basins of Thailand using decomposition and holt-winters methods enhanced by GRG nonlinear optimization. ASEAN J Sci Tech Report, 28(5), e259297. https://doi.org/10.55164/ajstr.v28i5.259297

Minsan, W., & Minsan, P. (2025b). GRG-HW and GRG-D optimization models for rainfall forecasting in the Yom river basin. figshare. Dataset. https://doi.org/10.6084/m9.figshare.28953389.v2

Mirjalili, S. (2016). Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 27, 1053-1073. https://doi.org/10.1007/s00521-015-1920-1

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

Pan, W. T. (2012). A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Systems, 26, 69-74. https://doi.org/10.1016/j.knosys.2011.07.001

Vimolsutjarit, N., Minsan,W., Taninpong, P., & Thumronglaohapun, S. (2025). Forecasting Water Volume of Dam Reservoirs in Northern Thailand Using a Classical Decomposition and Holt-Winters Enhanced by Fruit Fly Optimization Algorithm. KKU Science Journal, 53(2), 205–218. https://ph01.tci-thaijo.org/index.php/KKUSciJ

Yang, X. S. (2009). Firefly Algorithms for Multimodal Optimization. In proceedings of 5th international symposium, SAGA 2009 Sapporo, Japan. https://doi.org/10.1007/978-3-642-04944-6_14

Yang, X. S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In proceedings of nature inspired cooperative strategies for optimization (NICSO 2010). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12538-6_6

Yang, X. S. (2012). Flower Pollination Algorithm for Global Optimization. In proceedings of unconventional computation and natural computation, Lecture notes in computer science. (pp. 240-249). https://doi.org/10.1007/978-3-642-32894-7_27

Yang, X. S., Deb, & S. (2009). Cuckoo Search Via Lévy Flights. In 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (pp. 210–214). IEEE. https://doi.org/10.1109/NABIC.2009.5393690

ดาวน์โหลด

เผยแพร่แล้ว

2025-10-29

รูปแบบการอ้างอิง

ทองบุญนาค ก., & ไหมทอง ว. . . (2025). การประมาณค่าพารามิเตอร์เหมาะที่สุดในวิธีโฮลต์-วินเทอร์และการแยกส่วนประกอบด้วยอัลกอริทึมการค้นหาแบบนกกาเหว่า : การพยากรณ์ปริมาณน้ำไหลรายเดือนเข้าสู่อ่างเก็บน้ำของเขื่อนขนาดใหญ่ในภาคกลางและภาคตะวันตกของประเทศไทย. วารสารวิทยาศาสตร์และเทคโนโลยีสู่ชุมชน, 3(5), 1–23. https://doi.org/10.57260/stc.2025.1089

ฉบับ

ประเภทบทความ

บทความวิจัย