สมรรถภาพการเจริญเติบโต ผลผลิตจากการหมักย่อยในกระเพาะรูเมน และต้นทุนการขุนแกะลูกผสมที่ได้รับต้นข้าวพร้อมเมล็ดหมักเป็นแหล่งอาหารหยาบ
คำสำคัญ:
ต้นข้าวพร้อมเมล็ดหมัก, แกะ, สมรรถภาพการเจริญเติบโต, การหมักย่อยในกระเพาะรูเมน, เมตาโบไลต์ในเลือดบทคัดย่อ
การศึกษามีวัตถุประสงค์เพื่อทดสอบผลของการใช้ต้นข้าวพร้อมเมล็ดหมัก (3 สายพันธุ์) เป็นแหล่งอาหารหยาบในอาหารผสมครบส่วนต่อสมรรถภาพการเจริญเติบโต กระบวนการหมักย่อยในกระเพาะรูเมน และเมแทบอไลต์ในเลือดของแกะเพศเมียลูกผสมสายพันธุ์ซานต้าอินเนส โดยวางแผนการทดลองแบบสุ่มสมบูรณ์ ใช้แกะจำนวน 20 ตัว (อายุเฉลี่ย 7 เดือน) น้ำหนักเริ่มต้นการทดลองเฉลี่ย 18.33±2.16 กิโลกรัม ถูกแบ่งออกเป็น 4 กลุ่ม กลุ่มละ 5 ตัว โดยสุ่มแกะให้ได้รับอาหารผสมที่มีสัดส่วนของอาหารข้นและอาหารหยาบในสัดส่วน 50 ต่อ 50 ซึ่งแกะแต่ละกลุ่มจะได้รับอาหารข้นเหมือนกันแต่แหล่งของอาหารหยาบแตกต่างกัน คือ กลุ่มที่ 1 ได้รับต้นข้าวพร้อมเมล็ดหมักสายพันธุ์ กข61 (RD61) กลุ่มที่ 2 ได้รับต้นข้าวพร้อมเมล็ดหมักสายพันธุ์สุพรรณบุรี1 (SB1) กลุ่มที่ 3 ได้รับต้นข้าวพร้อมเมล็ดหมักสายพันธุ์ปทุมธานี 1 (PT1) และกลุ่มที่ 4 ได้รับหญ้าเนเปียร์หมัก (NS) ทำการเลี้ยงแกะเป็นเวลา 122 วัน จากการศึกษาพบว่าแกะมีน้ำหนักตัวสุดท้าย น้ำหนักตัวที่เพิ่มขึ้น อัตราการเจริญเติบโต และอัตราการเปลี่ยนอาหารเป็นน้ำหนักตัวแตกต่างกันอย่างไม่มีนัยสำคัญทางสถิติ (P > 0.05) ปริมาณการกินได้ในรูปวัตถุแห้งและความเข้มข้นของยูเรีย-ไนโตรเจนในกระแสเลือดของแกะที่ได้รับ SB1 มีแนวโน้มสูงกว่ากลุ่มอื่นๆ (P = 0.10) ความเป็นกรด-ด่างของของเหลวในกระเพาะรูเมนของแกะที่ได้รับ PT1 สูงกว่า RD61 SB1 และ NS (P < 0.05) นอกจากนี้แกะที่ได้รับ RD61 มีความเข้มข้นของกรดไขมันระเหยง่ายสายสั้นทั้งหมดสูงกว่ากลุ่มอื่นๆ (P < 0.05) อย่างไรก็ตามสัดส่วนของกรดอะซิติก กรดโพรพิโอนิก และกรดบิวทิริก (โมล/100 โมล) ของทุกกลุ่มมีความแตกต่างกันอย่างไม่มีนัยสำคัญทางสถิติ (P > 0.05) และพบว่าต้นทุนค่าอาหารต่อการเพิ่มน้ำหนักตัวหนึ่งกิโลกรัมของแกะที่ได้รับ SB1 ต่ำที่สุด ดังนั้นจากผลการทดลองนี้สรุปได้ว่าต้นข้าวหมักพร้อมเมล็ด โดยเฉพาะสายพันธุ์ RD61 และ SB1 (เก็บเกี่ยวที่ระยะเมล็ดข้าวเป็นน้ำนม) มีศักยภาพเป็นแหล่งอาหารหยาบในสัตว์เคี้ยวเอื้องได้ดี
References
กรมการข้าว. 2552. ข้าว: เทคโนโลยีการปลูกและการจัดการหลังเก็บเกี่ยว. โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย, กรุงเทพฯ. 179 หน้า.
นพดล ชัยวิสตูร, อัญชลี คงประดิษฐ์, ภูมพงศ์ บุญแสน, ภัสราพร ธีรสัพพัญูญ และสุริยะ สะวานนท์. 2565. การศึกษาเปรียบเทียบองค์ประกอบทางเคมีและความสามารถในการย่อยได้ของต้นข้าวหมัก 3 สายพันธุ์ด้วยเทคนิคถุงไนล่อน. หน้า 284-293. ใน: การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 60 (สาขาสัตว์). มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
พันทิพา พงษ์เพียจันทร์. 2547. หลักการอาหารสัตว์: หลักการโภชศาสตร์และการประยุกต์ เล่มที่ 2. พิมพ์ครั้งที่ 2. โรงพิมพ์
โอเดียนสโตร์, กรุงเทพฯ. 611 หน้า.
เมธา วรรณพัฒน์. 2533. โภชนศาสตร์สัตว์เคี้ยวเอื้อง. ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น. 473 หน้า.
วิโรจน์ ภัทรจินดา. 2546. โคนม. ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น, ขอนแก่น. 450 หน้า.
AOAC International. 2016. Official Methods of Analysis, Association of Official Analysis Chemists. 20th ed. Asssociation of Official Analytical Chemists., Rockville, MD, USA.
AOAC International. 2019. Official Methods of Analysis, Association of Official Analysis Chemists. AOAC International Gaithersburg, MD, USA.
Borjesson, D.L., M.M. Christopher and W.M. Boyce. 2000. Biochemical and hematologic reference intervals for free-ranging desert bighorn sheep. Journal of Wildlife Diseases 36(2): 294–300.
Chaucheyras-Durand, F., N. Walker and A. Bach. 2008. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Animal Feed Science and Technology 145(1): 5–26.
Chumpawadee, S., K. Sommart, T. Vongpralub and V. Pattarajinda. 2006. Effects of synchronizing the rate of dietary energy and nitrogen release on ruminal fermentation, microbial protein synthesis, blood urea nitrogen and nutrient digestibility in beef cattle. Asian-Australasian Journal of Animal Sciences 19: 181–188.
Church, D.C. 1969. Digestive Physiology and Nutrition of Ruminants. pp. 27-37. In: O.S.U. Books, Inc., Corvallis, Oregon. USA.
Ferraretto, L.F., R.D. Shaver and B.D. Luck. 2018. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. Journal of Dairy Science 101: 3937–3951.
Herbein, J.H., R.W. Van Maanen, A.D. McGilliard and J.W. Young. 1978. Rumen propionate and blood glucose kinetics in growing cattle fed isoenergetic diets. Journal of Nutrition 108: 994–1001.
Higginbothum, G.E., M. Torabi and J.T. Huber. 1989. Influence of dietary protein concentration and degradability on performance of lactating cows during hot environmental temperatures. Journal of Dairy Science 72: 2554–2564.
Javaid, A., M.M. Sarwar and M.A. Shahzad. 2008. Ruminal characteristics, blood pH, blood urea nitrogen balance in Nili-ravi Buffalo (Bubalus bualis) bulls fed diets containing various levels of ruminally degradable protein. Asian-Australasian Journal of Animal Sciences 21: 51–58.
Khongpradit, A., P. Boonsaen, N. Homwong, S. Buaphan, W. Maitreejit, K. Karnjanasirm and S. Sawanon. 2022. Effect of pineapple stem starch in concentrate diet on rumen fermentation in beef cattle and in situ dry matter degradability. Agriculture and Natural Resources 56: 277–286.
Ki, K.S., M.A. Khan, W.S. Lee, H.J. Lee, S.B. Kim, S.H. Yang, K.S. Baek, J.G. Kim and H.S. Kim. 2009. Effect of replacing corn silage with whole crop rice silage in total mixed ration on intake, milk yield and its composition in Holsteins. Asian-Australasian Journal of Animal Sciences 22(4): 516-519.
Kim, J.G., B. Park, C. Liu, G.Q. Zhao, H.J. Kim and E.K. Ahn. 2019. Productivity and quality of whole crop rice varieties in relation to plant components. Grassland Science 66(1): 40–47.
Liu, J., S. Kodo, J. Sekine, M. Okubo and Y. Asahida. 1986. The nutritive values of grass, corn and rice silage fed to sheep at different levels. Journal of the Faculty of Agriculture, Hokkaido University 63(1): 125–135.
Lslam, M.R., M. Lshida, S. Ando, T. Nishida and N. Yoshida. 2004. Estimation of nutrient value of whole crop rice silage and its effect on milk production performance by dairy cattle. Asian Australasian Journal of Animal Sciences 17(10): 1383–1389.
Matsuba, K., A. Padlom, A. Khongpradit, P. Boonsaen, P. Thirawong, S. Sawanon, Y. Suzuki, S. Koike and
Y. Kobayashi. 2019. Selection of plant oil as a supplemental energy source by monitoring rumen profiles and its dietary application in Thai crossbred beef cattle. Asian-Australasian Journal of Animal Sciences 32:1511–1520.
McNiven, M.A. 1984. Glucose metabolism in fat and thin adult sheep. Canadian Journal of Animal Science 64: 825–832.
Negawo, A.T., A. Teshome, A. Kumar, J. Hanson and C.S. Jones. 2017. Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy 7(2): 28, doi:
https://doi.org/10.3390/agronomy7020028
NRC. 2000. Nutrient Requirements of Beef Cattle. 7th Rev. Ed. Natl. Acad. Sci, Washington, DC. 276 p.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th Rev. Ed. Natl. Acad. Sci, Washington, DC. 6 p.
Ørskov, E.R., G.W. Reid and M. Kay. 1988. Prediction of intake by cattle from degradation characteristics of roughage. Animal Production 46: 29–34.
R Core Team. 2022. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (online): Available Source: http://www.R–project.org/ (January 20, 2022).
Sniffen, C.J., J.D. O’Connor, P.J. Van Soest, D.G. Fox and J.B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70: 3562–3577.
Sutton, J.D. 1985. Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science 68: 3376–3393.
Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. Cornell University Press, Ithaca. 476 p.
Wanapat, M., S. Kang, P. Khejornsart, R. Pilajun and S. Wanapat. 2013. Performance of tropical dairy cows fed whole crop rice silage with varying levels of concentrate. Tropical Animal Health and Production 46(1): 185–189.