ความหลากหลายทางพันธุกรรมและการจัดกลุ่มเฮทเทอโรติกข้าวโพดข้าวเหนียวสายพันธุ์แท้ ด้วยเครื่องหมาย Sequence Related Amplified Polymorphism (SRAP)
คำสำคัญ:
ความหลากหลายทางพันธุกรรม, เฮทเทอโรติก , เครื่องหมายดีเอ็นเอ, ข้าวโพดข้าวเหนียวบทคัดย่อ
ความสำเร็จของการพัฒนาพันธุ์ข้าวโพดลูกผสมขึ้นอยู่กับความแตกต่างทางพันธุกรรมของสายพันธุ์แท้ที่ใช้เป็นพ่อแม่พันธุ์ ดังนั้น การศึกษาในครั้งนี้จึงมีวัตถุประสงค์เพื่อศึกษาความหลากหลายทางพันธุกรรมและจัดกลุ่มเฮทเทอโรติกข้าวโพดข้าวเหนียวจำนวน 75 ตัวอย่าง ประกอบด้วยข้าวโพดข้าวเหนียวสายพันธุ์แท้จากศูนย์วิจัยข้าวโพดและข้าวฟ่างแห่งชาติจำนวน 62 ตัวอย่าง ข้าวโพดข้าวเหนียวพันธุ์การค้าจำนวน 8 ตัวอย่าง และข้าวโพดข้าวเหนียวจากประเทศจีนจำนวน 5 ตัวอย่าง โดยใช้เครื่องหมาย SRAP จำนวน 16 คู่ไพรเมอร์ ตรวจพบแถบดีเอ็นเอทั้งสิ้น 199 แถบ เป็นแถบ ดีเอ็นเอที่มีความแตกต่างกันจำนวน 176 แถบ คิดเป็น 88.44% โดยมีแถบดีเอ็นเอต่อเครื่องหมายเฉลี่ย 12.44 แถบต่อเครื่องหมาย มีค่า PIC เฉลี่ยเท่ากับ 0.26 และมีค่าความหลากหลายของยีนเฉลี่ยเท่ากับ 0.26 และจากการจัดกลุ่มข้าวโพดข้าวเหนียวด้วยวิธี Neighbor-joining analysis และ STRUCTURE ให้ผลสอดคล้องกัน คือ สามารถจัดกลุ่มข้าวโพดข้าวเหนียวทั้งหมดออกเป็น 3 กลุ่ม โดยกลุ่มที่ 1 และกลุ่มที่ 2 ประกอบด้วยข้าวโพดข้าวเหนียวสายพันธุ์แท้ทั้งหมด ขณะที่กลุ่มที่ 3 ประกอบด้วยข้าวโพดข้าวเหนียวสายพันธุ์แท้ พันธุ์การค้า และพันธุ์จากประเทศจีน ผลการศึกษาในครั้งนี้สามารถนำข้อมูลการจัดกลุ่มที่ได้ไปใช้คัดเลือกพ่อแม่พันธุ์สำหรับใช้สร้างข้าวโพดข้าวเหนียวลูกผสมพันธุ์ใหม่ต่อไป
References
กิตติยา โพบำรุง. 2554. การศึกษาข้าวโพดข้าวเหนียวและข้าวโพดเทียน 18 ตัวอย่าง โดยใช้เครื่องหมาย SRAP จำนวน 25 คู่ไพรเมอร์. ปัญหาพิเศษปริญญาตรี, มหาวิทยาลัยเกษตรศาสตร์. 20 หน้า.
ธาวิดา ศิริสัมพันธ์. 2561. เทคโนโลยีชาวบ้าน. (ระบบออนไลน์). แหล่งข้อมูล: https://www.technologychaoban.com/agricultural-technology/article_65761. (5 มีนาคม 2566).
Anderson, J.A., G.A. Churchill, J.E. Autrique, S.D. Tanksley and M.E. Sorrells. 1993. Optimizing parental selection for genetic linkage maps. Genome 36(1): 181-186.
Ahmed, Y.K.Y., M.A.H. Elmajed, R.A.I. Abduallah, A.A.F. Ali, H.E.M. Ali, G.A.R. El-Sherbeny, A.Y.M. Ahmed, H.S.A. Abdelaziz and A.G.A. Khaled. 2020.
Comparative analysis of genetic diversity among Egyptian commercial maize hybrids obtained by SRAP markers. Journal of King Abdulaziz University-Meteorology, Environment and Arid Land Agriculture Sciences 29(1): 79-86, doi: 10.4197/Met. 29-1.7
Aguiar, C.G., I. Schuster, A.T.A. Junior, C.A. Scapim and E.S.N. Vieira. 2008. Heterotic groups in tropical maize germplasm by test crosses and simple sequence repeat markers. Genetics and Molecular Research 7: 1233-1244.
Barata, C. and M.J. Carena. 2006. Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151: 339-349.
Carena, M.J. and A.R. Hallauer. 2001. Expression of heterosis in leaming and midland corn belt dent population. Journal of the Iowa Academy of Science 108: 73-78.
Chapman, S.C., S. Chakraborty, M.F. Dreccer and C.S.M. Howden. 2012. Plant adaptation to climate change opportunities and priorities in breeding. Crop and Pasture Science 63: 251-268.
Dabral, H., D.C. Baskheti, R.K. Singh and V.P. Kumar. 2020. Molecular diversity assessment using sequence related amplified polymorphism (SRAP) markers in maize. African Journal of Biotechnology 2020: 12392, doi: 10.5897/AJB.
Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611-2620.
Fan, X.M., J. Tan, H.M. Chen and J.Y. Yang. 2003. Heterotic grouping for tropical and temperate maize inbreds by analyzing combining ability and SSR markers. Maydica 48: 251-257.
Fan, X.M., Y.M. Zhang, W.H. Yao, H.M. Chen, J. Tan, C.X. Xu, X.L. Han, L.M. Luo and M.S. Kang. 2009. Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal 101: 106-12.
Fareghi, S., A.F. Mirlohi, G. Saeidi and H. Khamisabadi. 2019. Evaluation of SRAP marker efficiency in identifying the relationship between genetic diversities of corn inbred lines with seed quantity and quality in derived hybrids. Cellular and Molecular Biology (Noisy-le-Grand) 65(4): 6-14.
Ferreira, F., C.A. Scapim, C. Maldonado and F. Mora. 2018. SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks. Crop Breeding and Applied Biotechnology 18: 309-313.
Gethi, J.G., J.A. Labate, K.R. Lamkey, M.E. Smith and S. Kresovich. 2002. SSR variation in important US maize inbred lines. Crop Science 42: 951-7.
Jaccard, P. 1901.Eetude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la SocieteVaudoise des Sciences Naturelles 37: 547-579, doi.org10.5169/seals-266450.
Kashiani, P., G. Saleh, J.M. Panandam, N.A.P. Abdullah and A. Selamat. 2012. Molecular characterization of tropical sweet corn inbred lines using microsatellite markers. Maydica 57: 154-163.
Kashiani, P., G. Saleh, N.A.P. Abdullah and M.A. Sin. 2014. Evaluation of genetic variation and relationships among tropical sweet corn inbred lines using agronomic traits. Maydica 59: 275-282.
Kulka, V.P., T.A. Silva, R.I. Contreras-Soto, C. Maldonado, F. Mora and C.A. Scapim. 2018. Diallel analysis and genetic differentiation of tropical and temperate maize inbred lines. Crop Breeding and Applied Biotechnology 18: 31-38.
Li, G. and C.F. Quiros. 2001. Sequence related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in the Brassica. Theoretical and Applied Genetics 130: 445-461.
Li, Y., Y. Shi, Y. Song, J. Du, R. Tuberosa and T. Wang. 2004. Analysis of genetic diversity in maize inbred lines base on AFLP markers. Maydica 49: 89-95.
Lodhi, M.A., G.N. Ye, N.F. Weeden and B.I. Reisch. 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology Reporter 12: 6-13.
Mahato, A., J.P. Shahi, P.K. Singh and M. Kumar. 2018. Genetic diversity of sweet corn inbreds using agro-morphological traits and microsatellite markers. 3 Biotech 8: 332.
Meena, A.K., D. Gurjar, S.S. Patil and B.L. Kumhar. 2017. Concept of heterotic group and its exploitation in hybrid breeding. International Journal of Current Microbiology and Applied Sciences 6: 61-73.
Nelson, P.T., N.D. Coles, J.B. Holland, D.M. Bubeck, S. Smith and M.M. Goodman. 2008. Molecular characterization of maize inbreds with expired U.S. plant variety protection. Crop Science 48: 1673-1685.
Prasanna, B.M. and D. Hoisington. 2003. Molecular breeding for maize improvement: An overview. Indian Journal of Biotechnology 2: 85-98.
Pritchard, J.K., X. Wen and D. Falush. 2007. Documentation for Structure Software Version 2.2., Available from http://pritchbsduchicagoedu/software/structure22/ readme.pdf.
R Development Core Team. 2013. R: A Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Reid, L.M., K. Xiang, X. Zhu, B.R. Baum and S.J. Molnar. 2011. Genetic diversity analysis of 119 Canadian maize inbred lines based on pedigree and simple sequence repeat markers. Canadian Journal of Plant Science 91: 651- 661.
Reif, J.C., A.R. Hallauer and A. E. Melchinger. 2005a. Heterosis and heterotic pattern in maize. Maydica 50: 215-223.
Reif, J.C., S. Hamrit, M. Heckenberger, W. Schipprack, H.P. Maurer, M. Bohn and A.E. Melchinger. 2005b. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theoretical and Applied Genetics 111: 838-845.
Sa, K.J., J.Y. Park, K.J. Park and J.K. Lee. 2010. Analysis of genetic diversity and relationships among waxy maize inbred lines in Korea using SSR markers. Genes Genome 32: 375-384.
Sa, K.J., T.K. Hong and J.K. Lee. 2018. Genetic diversity and association analyses of Canadian maize inbred lines with agronomic traits and simple sequence repeat markers. Plant Breeding and Biotechnology 6: 159-169.
Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Journal of Molecular Evolution 30: 2725-2729.
Troyer, A.F. 1999. Background of U.S. hybrid corn. Crop Science 39: 601-626.
Yeh, F.C., R.C. Yang, T. Boyle, Z.H. Ye and J.X. Mao. 1999. POPGENE VERSION 1.32: the user friendly software for population genetic analysis. https://www.softpedia.com/get/Science-CAD/Popgene-Population-Genetic-Analysis.shtml.