Isolation and Identification of Actinomycetes from Soil for Controlling Aedes aegypti Larvae

Authors

  • Pamin Timcharoensombut Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus
  • Pabhop Sinchayakul Department of Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus
  • Wichai Sorapongpaisal Center for Research and Academic Outreach, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus
  • Araya Bunsak Faculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University

Keywords:

Actinomycetes, Aedes aegypti, 16S rDNA, phylogenetic

Abstract

Aedes aegypti is not only an annoying insect but also a carrier of many diseases to humans. Many control methods have been applied continuously. Microbial control using microorganism or its product is becoming outstanding because of highly efficiency, easily to apply and normally safe to human and environment. The objective of this research was to isolate and identify actinomycetes from soil for controlling Aedes aegypti larvae. Soil samples were collected from 2 collecting sites in Mae Hong Son Province with 20 soil samples/site. Actinomyces were isolated using serial dilution technique from soil suspension and spread on starch casein agar (SCA) plates. The actinomycetes colonies were picked up and cultured in glucose yeast malt (GYM) liquid media for 21 days and extracted using high speed centrifuge at 10,000 rpm for 10 min. The supernatant of culture medium was collected, adjusted to 5% concentration and used for efficacy test on 10 mosquito larvae (3rd stage). The isolate with the highest efficacy of crude extract to control mosquito larvae was selected and processed for 2 steps: first, to determine the efficacy of their crude extracts on mosquito larvae as above after being cultured in 5 liquid media: GYM, GYB, SY, ISP1 and ISP3 and second, to search for the related species using phylogenetic analysis based on ITS of 16S rDNA sequence. The result revealed that the total of 195 isolates of Actinomyces were screened from all soil samples. Only was the crude extract of MSsm 007-6 the highest efficacy to control mosquito larvae with 50% mortality at 48 hours after application. The crude extracts of MSsm 007-6 cultured in GYM, Glucose Yeast extract Broth (GYB) and SY liquid media had high efficacy to control mosquitos at 73.3, 96.7 and 63.3 % mortality, respectively. The Neighbor-Joining phylogenetic analysis represented that ITS of 16S rDNA sequence of MSsm 007-6 was very closely related to Streptomyces kasugaensis strain M338-M1 with supporting bootstrap value at 75%

References

ชนินทร์ สุริยกุล ณ อยุธยา, น้ำฝน ป้อมทอง, จรัญ เจตนะจิตร, พัชรี สุนทรนัน และ วิเชียร กิจปรีชาวนิช. 2546. เชื้อแอคติโนมัยสีทจากดินป่าเบญจพรรณ และป่าเต็งรังบริเวณสถานีวิจัยสัตว์ป่า เขานางรำ เขตรักษาพันธุ์สัตว์ป่าห้วยขาแข้ง. ใน: รายงานการประชุมวิชาการของ มหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 41 (สาขาวิทยาศาสตร์สาขาการจัดการทรัพยากรและสิ่งแวดล้อม).หน้า 363-370. กรุงเทพฯ: มหาวิทยาลัยเกษตรศาสตร์

พงศ์ระวี นิ่มน้อย. 2558. แอคติโนมัยซีท. สำนักพิมพ์มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพมหานคร.

อรัญ งามผ่องใส, สนั่น ศุภธีรสกุล และ ธีรพล ศรีชนะ. 2559. องค์ประกอบทางเคมีและการปรับปรุงผลิตภัณฑ์น้ำมันเมล็ดสะเดาช้าง (Azadirachta exelsa Jack.) เพื่อควบคุมยุงลายบ้าน (Aedes aegypti Linnaeus). รายงานวิจัยฉบับสมบูรณ์ คณะทรัพยากรธรรมชาติ คณะการแพทย์แผนไทย และคณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์.

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool.

Journal of Molecular Biology 215: 403-410.

Anupama, M. K.J.P Narayana and M. Vijayalakshmi. 2007. Screening of Streptomyces purpeofuscus for antimicrobial metabolites. Research Journal of Microbiology 2(12): 992-994.

Anwar, S., B. Ali, F. Qamar and I. Sajid. 2014. Insecticidal activity of actinomycetes isolated from salt range, Pakistan against mosquitoes and red flour beetle. Pakistan Journal of Zoology. 46(1): 83-92.

Balakrishnan, S., P. Santhanam and M. Srinivasan. 2016. Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi. Journal of Parasitic Diseases Doi: 10.1007/s12639-016-0812-3.

Bond, J.G., C.F. Marina and T. Williams. 2004. The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Medical and Veterinary Entomology 18: 50-56.

Christophers, R.S. 1960. Aedes aegypti (L.) the Yellow Fever Mosquito. The University Press, Cambridge (Brooke Crutchley, University Printer). 750 p.

Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.

Ganesan, P., H.R. David, D.A. Reegan., R.M. Gandhi, G.M. Paulraj, S. Ignacimuthu and N.A. Al-Dhabi. 2017. Isolation and molecular characterization of actinomycetes with antimicrobial and mosquito larvicidal properties. Beni-Suef University Journal of Basic and Applied Sciences 6: 209-217.

Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Hamada, M., N. Kinoshita, S. Hattori, A. Yoshida, Y. Okami, K. Higashide, N Sakata and M. Hori. 1995. Streptomyces kasugaensis sp. nov.: a new species of genus Streptomyces. Actinomycetologica 9(1): 27–36.

Izquierdo-Suzán, M., S. Zárate, J. Torres-Flores, F. Correa-Morales, C. González-Acosta, E.E. Sevilla-Reyes, R. Lira, L.S. Alcaraz-Estrada and M. Yocupicio-Monroy. 2019. Natural vertical transmission of zika virus in larval Aedes aegypti populations, Morelos, Mexico. Emerging Infectious Diseases 25(8): 1477-1484.

Jayasinghe, B.A.T.D and D. Parkinson. 2008. Actinomycetes as antagonists of litter decomposer fungi. Applied Soil Ecology 38: 109-118.

Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549.

Lacey, A.L. 2007. The role of biological control of mosquitoes in integrated vector control. The American Mosquito Control Association Bulletin 23(7): 133-163.

Liu, H., S. Qin, Y. Wang, W. Li and J. Zhang. 2008. Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World Journal of Microbiology and Biotechnology 24(10): 2243-2248.

Oliveira, R.S., T.R.R. Caleffe and H. Conte. 2017. Chemical control of Aedes aegypti: a review on effects on the environment and human health. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental - REGET e-ISSN 2236 1170. 21(3): 240-247.

Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.

Singh, G and S. Prakash. 2012. Lethal effect of Streptomyces citreofluorescens against larvae of malaria, filaria and dengue vectors. Asian Pacific Journal of Tropical Medicine Doi: 10.1016/S1995-7645(12)60123-0.

Takizawa, M., R.R. Colwell and R.T. Hill. 1993. Isolation and diversity of actinomycetes in the Chesapeake Bay. Applied Environmental Microbiology 59(4): 997-1002.

Tamura, K. and S. Kumar. 2002. Evolutionary distance estimation under heterogeneous substitution pattern among lineages. Molecular Biology and Evolution 19(10): 1727-1736.

Tetreau, G., S. Grizard, C.D. Patil, F-H. Tran, V.T. Van, R. Stalinski, F. Laporte, P. Mavingui, L. Després and C.V. Moro. 2018. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Parasites & Vectors. 11: 121.

Thavara, U., A. Tawatsin, T. Pengsakul, P. Bhakdeenuan, S. Chanama, S. Anantapreecha, C. Molito, J. Chompoosri, S. Thammapalo, P. Sawanpanyalert and P. Siriyasatien. 2009. Outbareak of chikungunya fever in Thailand and virus detection in field population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse (Diptera: culicidae). Southeast Asian Journal Tropical Medicine Public Health 40(5): 951-962.

Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25(24): 4876-4882.

Wadetwar, N.R. and T.A. Patil. 2013. Isolation and characterization of bioactive actinomycetes from soil in and around Nagpur. International Journal Pharmaceutical Sciences and Research 4(4): 1428-1433.

Downloads

Published

2022-07-26

Issue

Section

Research article Academic article and Review article