Effect of Animal Manures on Atrazine Residue in Soil
Keywords:
atrazine, deisopropylatrazine, animal manureAbstract
Animal manures were applied to amend agricultural soils which is a common practice to improve soil fertilizing through the addition of plant nutrients. This study was conducted to determine the performance of microorganisms from 6 types of animal manures (viz. cow, buffalo, swine, equine, swiftlet and chicken manures) for decomposing atrazine in soil comparing with two controls (C1: without manure and with atrazine, C2: without manure and atrazine,). The experiments were designed in completely randomized design (CRD) with 3 replications. The amount of atrazine residues in soil and water were analyzed by colorimetric method and atrazine formation was investigated using HPLC technique. Moreover, soil properties before and after cooperated with animal manures were determined. The results showed that equine and swiftlet manures were the most effective in decomposing atrazine residues in soil. In which these two species may be containing microorganisms that can degrade atrazine and transform into deisopropylatrazine that is metabolites production form atrazine degradation in soil
References
กองวิเคราะห์ดิน. 2553. คู่มือการปฏิบัติงาน กระบวนการวิเคราะห์ตรวจสอบดินทางเคมี. กรมพัฒนาที่ดิน, กรุงเทพฯ
สถาบันวิจัยพืชไร่และพืชทดแทนพลังงาน. 2558. วิธีการปลูกและการให้น้ำข้าวโพดหวาน. (ระบบออนไลน์). แหล่งข้อมูล: https://www.kubotasolutions.com/knowledge/corn/detail/313. (11 สิงหาคม 2562).
สำนักงานควบคุมพืชและวัสดุการเกษตร. 2561. รายงานการนำเข้าวัตถุอันตราย ปี 2561. (ระบบออนไลน์). แหล่งข้อมูล:
http://www.doa.go.th/ard/?page_id=386. (15 สิงหาคม 2562)
Du Preez, L.H., P.J. Jansen van Rensburg, A.M. Jooste, J.A. Carr, J.P. Giesy, T.S. Gross, R.J. Kendall, E.E. Smith, G. van der Kraak and K.R. Solomon. Seasonal exposures to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environmental Pollution 135(1): 131-141.
Environmental Protection Agency. 2003. Atrazine-background and update. (Online). https://www.epa.gov/ ingredients-used-pesticide-products/atrazine-background-and-updates. (May 20, 2019).
Graymore, M., F. Stagnitti and G. Allinson. 2001. Impacts of atrazine in aquatic ecosystem. Environment International 26(7-8): 483-495.
Govantes, F., O. Porrúa, V. García-González and E. Santero. 2009. Atrazine biodegradation in lab and in the field: enzymatic activities and gene regulation. Microbial Biotechnology 2(2): 178-185.
Haynes, R.J. and M.S. Mokolobate. 2001. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutrient Cycling in Agroecosystems 59(1): 47-63.
Iqbal, S., M. Arif, C. Thierfelder, T. Yasmeen and T. Li. 2018. Reducing nitrogen losses and increasing maize productivity in organic manures-amended soils by increasing the ridge to furrow proportion. Experimental Agriculture 55(3): 428-442.
Kaufman, D.D. and J. Blake. 1970. Degradation of atrazine by soil fungi. Soil Biology and Biochemistry 2(2): 73-80.
Keller, A. 1978. Degradation of simazine (Gesatop) in soil under aerobic, anaerobic and sterile-aerobic conditions. Project Report 05/78. Unpublished study submitted by Ciba-Geigy Crop., Greenboro, North Carolina.
Kesari, R. and V.K. Gupta. 1998. A simple method for the spectrophotometric determination of atrazine using p-aminoacetophenone and its application in environmental and biological samples. Talanta 47(5): 1085-1092.
Masaphy, S., D. Levanon, J. vavy and Y. Henis. 1993. Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-chloro-4-ethylamino-6-(1-hydroxyisopropyl)amino-1,3,5- triazine. Appiled and Environmental Microbiology 59(2): 4342-4346.
Melissa, T.H. 2004. Rhodococcus equi. pp 287-302. In D. Sellon and M. Long (eds). Equine Infectious Diseases. Saunders Elsevier Inc., Missouri.
Mueller, T.C., L.E. Steckel and M. Radosevich. 2010. Effect of soil pH and previous atrazine use history on atrazine degradation in a Tenessee field soil. Weed Science 58(4): 478-483.
Nasseri, S., M. Dehghani, S. Amin, K. Naddafi and Z. Zamanian. 2009. Fate of atrazine in the agricultural soil of corn fields in fars province of Iran. Iranian Journal of Environmental Health Science and Engineering 6(4): 223-232.
Nur, N.M. 2012. Isolation and characterization of bacteria from feces samples from commercialized swiftlets farming. Bachelor of Science with Honours. University Malaysia Sarawak, Sarawak, 47 p.
Omotayo, A.E., M.O. llori, O.S. Obayori and O.O. Amund. 2016. Influene of pH, temperature and nutrient addition on the degradation of atrazine by Nocardioides spp. isolated from agricultural soil in Nigeria. Malaysian Journal of Microbiology 12(4): 270-278.
Park, J.H., Y. Feng, P. Ji, T.C. Voice and S.A. Boyd. 2003. Assessment of bioavailability of soil-sorbed atrazine. Applied and Environmental Microbiology 69(6): 3288-3298.
Pathak, R.K. and A.K. Dikshit. 2011. Atrazine and human health. Internationak Journal of Ecosystem. 1(1): 14-23.
Penn, C.J. and J.J. Camberato. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(120): 1-8.
Phewnil, O.A., N. Tungkananurak, S. Panichsakpatana and B. Pitiyont. 2012. Phytotoxicity of atrazine herbicide to fresh water macrophyte duckweed (Lemna perpusilla Torr.) in Thailand. Research Article: 16-27.
Price, G. 2006. Australian Soil fertility Manual. CSIRO Publishing, Collingwood, Australia. 168 p.
R Development Core Team. 2014. R: language and environment for statistical computing. R foundation for statistical computing. (Online). http://www.R-project.org. (May 20, 2019).
Rodgers, K.M., J.O. Udesky, R.A. Rudel and J.G. Brody. 2018. Environmental chemicals and breast cancer: an updated review of epidemiological literature informed by biological mechanisms. Environmental research 160: 152-182.
Rohde, W.A., L.E. Asmussen, E.W. Hauser, M.L. Hester and H.D. Allison. 1981. Atrazine persistence in soil and transport in surface and subsurface runoff from plots in the coastal plain of the southern United States. Agro- Ecosystem 7(3): 225-238.
Rousseaux, S., A. Hartmann, B. Lagacherie, S. Piutti, F. Andreux and G. Soulas. 2003. Inoculation of an atrazine-degrading strain, Chelatobacter heintzii Citl, in four different soils: effects of different inoculum densities. Chemosphere 51(7): 569-576.
Sadowsky, M.J., Z. Tong, M. de Souza and L.P. Wackett. 1998. AtzC is a new member of the amidohydrolase protein superfamily and is homologous to other atrazine-metabolizing enzymes. Journal of Bacteriology 180(1): 152-158.
Shao, Z.Q., W. Seffens, W. Mulbry and R.M. Behki. 1995. Cloning and expression of the s-triazine hydrolase gene (trzA) from Rhodococcus corallines and development of Rhodococcus recombinant strains capable of dealkylating and dechlorinating the herbicide atrazine. Journal of Bacteriology 177(20): 5748-5755.
Steinheimer, T.R. 1993. HPLC determination of atrazine and principal degradates in agricultural soils and associated surface and ground water. Journal of Agricultural and Food Chemistry 41: 588-595.
Strong, L.C., C. Rosendahl, G. Johnson, M.J. Sadowsky and L.P. Wackett. 2002. Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Applied and Environmental Microbiology 68(2): 5973-5980.
World Health Organization. 2003. Chemical fact sheet. (Online). https://www.who.int/water_sanitation_ health/ publications/2011/9789241548151_ch12.pdf. (August 10, 2019)
Zhang, J., S. Liang, X. Wang, Z. Lu, P. Sun, H. Zhang and F. Sun. 2019. Biodegradation of atrazine by the novel Klebsiella variicola Strain FH-1. Hindawi BioMed Research International 2019: Article ID 4756579.
