Study of the Effectiveness of Soil Amendment Product Against Disease from Fusarium spp., and the Release of Ammonium and Nitrate from the Soil of Durian Plants
Keywords:
Fusarium sp, bacteria, nitrogen, durianAbstract
The appropriate soil amendment product application can improve soil chemical, physical, and biological properties. The research aimed to investigate the biological and chemical properties of the soil amendment product. The quantification of bacteria in a specific culture medium, isolation of bacteria from soil with and without soil amendment product, testing their efficiency in inhibiting the pathogenic fungus Fusarium spp., and soil nutrients were analyzed in column. The experiment findings revealed a tenfold increase in bacterial numbers approximately 18 days after the addition of soil amendment products compared to the untreated soil. Numerous beneficial nitrogen-fixing bacteria were discovered. However, bacteria beneficial to degrade cellulose were present in very small quantities. When soil amendment products were mixed with PDA at a 2% concentration, they inhibited Fusarium sp. 1 by approximately 40% in Petri dishes. Bacterial isolates NA03, NA08, and NA09 effectively inhibited Fusarium spp. Moreover, the soil amendment products resulted in reduced ammonium and nitrate levels in soil cultivated with durian compared to untreated soil. Applying this products led to the utilization of ammonium and nitrate by nitrogen-fixing bacteria within the products for growth at 18 days. Therefore, the use of this product delayed the durian plants nitrogen intake from the soil for a short period of time
References
กรมพัฒนาที่ดิน. 2567. ระบบสารสนเทศเชิงพื้นที่ เพื่อวางแผนการใช้ที่ดินเกษตรกรรายแปลง กรมพัฒนาที่ดิน. (ระบบออนไลน์). แหล่งข้อมูล: https://lddonfarm.ldd.go.th/lddonfarm/main (16 กุมภาพันธ์ 2567).
จำเป็น อ่อนทอง. 2547. คู่มือการวิเคราะห์ดินและพืช. ภาควิชาธรณีศาสตร์ คณะทรัพยากรธรรมชาติ มหาวิทยาลัยสงขลานครินทร์, สงขลา. 168 หน้า.
พิกุล นุชนวลรรัตน์. 2559. ผลของสารสกัดจากพืชบางชนิดที่มีต่อโรคหลังเก็บเกี่ยวของกล้วยไข่ที่เกิดจากเชื้อรา Fusarium sp. วารสารวิจัยรำไพพรรณี 10(2): 79-88.
สำนักส่งเสริมและจัดการสินค้าเกษตร. 2566. รายงานสถานการณ์การผลิตไม้ผลภาคตะวันออกปี 2566. (ระบบออนไลน์). แหล่งข้อมูล: https://doaenews.doae.go.th/archives/16543 (6 ตุลาคม 2566).
สุทธิภัทร แช่ย่าง. 2563. ผลของวัสดุปรับปรุงดินต่อคุณสมบัติของดินใต้ทรงพุ่มมะม่วง อ.เฉลิมพระเกียรติ จ.สระบุรี. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต. มหาวิทยาลัยแม้โจ้, เชียงใหม่. 104 หน้า.
Agarwal, D.K. and A.K. Sarboy. 1978. Physiological studies on four species of Fursarium pathogenic to soyabean. Indian Phytopathology 31(1): 24-31.
Aghighi, S., G.H.S. Bonjar, I. Saadoun, R. Rawashdeh and S. Batayneh. 2004. First report of antifungal spectra of activity of Iranian actinomycetes strains against Alternaria solani, Alternaria alternata, Fusarium solani, Phytophthora megasperma, Verticillium dahliae and Saccharomyces cerevisiae. Asian Journal of Plant Sciences 3: 463-471.
Ayala-Torres, A.M., S. Aranda-Ocampo, C.D. León-García de Alba, C. Nava-Díaz and J.R. Sánchez-Pale. 2023. Antagonistic bacteria against Fusarium spp. isolated from sclerotia of Claviceps gigantea in maize (Zea mays). La Revista Mexicana de Fitopatología 41(2): 143-164.
Batista, M.B. and R. Dixon. 2019. Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit. Biochemical Society Transactions 47(2): 603-614.
Chantarasiri, A. and P. Boontanom. 2021. Fusarium solani and Lasiodiplodia pseudotheobromae, fungal pathogens causing stem rot disease on durian trees (Durio zibethinus) in Eastern Thailand. New Disease Reports 44(1): 1-3.
Falardeau, J., C. Wise, L. Novitsky and T.J. Avis. 2013. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of chemical ecology 39: 869-878.
Gea T., R. Barrena, A. Artola and A. Sanchez. 2004. Monitoring the biological activity of the composting process: oxygen uptake rate (OUR), respirometric index (RI), and respiratory quotient (RQ) Biotechnology and Bioengineering 88: 520-527.
Gupta, V., A. Misra and R. Gaur. 2010. Growth characteristics of Fusarium spp. causing wilt disease in Psidium guajava L. in India. Journal of Plant Protection Research 50(4): 452-462.
Handoko, A., A.L. Abadi and L.Q. Aini. 2014. Karakterisasi penyakit penting pada pembibitan tanaman Durian di Desa Plangkrongan, Kabupaten Magetan dan pengendalian dengan bakteri antagonis secara in vitro. Jurnal HPT (Hama Penyakit Tumbuhan) 2(2): 15-22.
Hoffland, E., T.W. Kuyper, R.N. Comans and R.E. Creamer. 2020. Eco-functionality of organic matter in soils. Plant and Soil 455: 1-22.
Huergo, L.F., R.A. Monteiro, A.C. Bonatto, L.U. Rigo, M.B.R. Steffens, L.M. Cruz, L.S. Chubatsu, E.M. Souza and F.O. Pedrosa. 2008. Regulation of nitrogen fixation in Azospirillum brasilense. CASSÁN, FD; GARCIA DE SALAMONE, I. Azospirillum sp.: cell physiology, plant interactions and agronomic research in Argentina. Buenos Aires: Asociación Argentina de Microbiologia 17-35.
Immanuel, G., R. Dhanusha, P. Prema and A.J.I.J. Palavesam. 2006. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. International Journal of Environmental Science and Technology 3: 25-34.
Jacobson, S. 2004. Aerobic decomposition of organic wastes 2. Value of compost as fertilizer, Resources, Conservation and Recycling 13: 57-71.
Kifle, M.H. and M.D. Laing. 2016. Isolation and screening of bacteria for their diazotrophic potential and their influence on growth promotion of maize seedlings in greenhouses. Frontiers in plant science 6: 1225.
Kouki, S., N. Saidi, A.B. Rajeb, M. Brahmi, A. Bellila, M. Fumio, A. Hefiène, N. Jedidi, J. Downer and H. Ouzari. 2012. Control of Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici using mixture of vegetable and Posidonia oceanica compost. Applied and Environmental Soil Science 2012: 239639.
Kumar, A., V. Kumar and B. Singh. 2021. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules 169: 564-582.
Nelson, D.W. and L.E. Sommers. 1980. Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists 63(4): 770-778.
Phanomsophon, T., N. Jaisue, A. Worphet, N. Tawinteung, B. Shrestha, J. Posom, L. Khurnpoon and P. Sirisomboon. 2022. Rapid measurement of classification levels of primary macronutrients in durian (Durio zibethinus Murray CV. Mon Thong) leaves using FT-NIR spectrometer and comparing the effect of imbalanced and balanced data for modelling. Measurement 203: 111975.
Pikovskaya, R.I. 1948. Mobilization of phosphates in soil in relation with vital activity of some microbial species. Mikrobiologiya 17: 362–370.
Pinduma, R.T. and D.E. Angeles. 2009. Relationship between leaf nitrogen concentration and fruit yield of Philippine. Journal of Crop Science 34(1): 53-61.
Pongpisutta, R., P. Keawmanee, S. Sanguansub, P. Dokchan, S. Bincader, V. Phuntumart and C. Rattanakreetakul. 2023. Comprehensive investigation of die-back disease caused by Fusarium in Durian. Plants 12(17): 3045.
R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. (Online): Available Source: https://www.R-project.org (October 10, 2023).
Salakpetch, S. 2005. Durian (Durio zibethinus L.) flowering, fruit set and pruning pp.17-16. In: Proceedings of 5thAnnual International Tropical Fruit Conference, Hilo Hawaiian.
Thongkaew, S., C. Jatuporn, P. Sukprasert, P. Rueangrit and S. Tongchure. 2021. Factors affecting the durian production of farmers in the eastern region of Thailand. International Journal Agricultural Extension 9(2): 285-293.
Wachowska, U., D. Packa and M. Wiwart. 2017. Microbial inhibition of Fusarium pathogens and biological modification of trichothecenes in cereal grains. Toxins 9(12): 408.
Weber, K. and M. Burow. 2018. Nitrogen–essential macronutrient and signal controlling flowering time. Physiologia Plantarum 162(2): 251-260.
Wu, D., Z. Wei, T.A. Mohamed, G. Zheng, F. Qu, F. Wang, Y. Zhao and C. Song. 2022. Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286: 131635.
Zhang, N., N. Nunan, P.R. Hirsch, B. Sun, J. Zhou and Y. Liang. 2021a. Theory of microbial coexistence in promoting soil–plant ecosystem health. Biology and Fertility of Soils 57: 897-911.
Zhang, S., Y. Zhang, K. Li, M. Yan, J. Zhang, M. Yu, S. Tang, L. Wang, H. Qu, L. Luo and W. Xuan. 2021b. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Current Biology 31(4): 671-683.
