Selenium Compound on Germination and Phytochemical in Kangkong Seedling

Authors

  • Piyaphong Seankhot Innovative Botany, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus
  • Intira KoodKaew Innovative Botany, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus
  • Suphachai Amkha Department of Soil Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus
  • Pornpairin Rungcharoenthong Innovative Botany, Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus

Keywords:

sodium selenite, antioxidant, phenolic compound, selenium accumulation

Abstract

Selenium is an essential mineral for human health. There is an antioxidant capacity to promote the immune system, reduce the risk of disease, and prevent heart disease and stroke. Therefore, the objective was to study the type and concentration of selenium on germination, growth, phytochemicals, and selenium accumulation in kangkong seedlings. The experiment was a completely randomized design in a 2×5 factorial in CRD, consisting of 2 factors, 4 replicates, with factor 1 (Se) being the type of selenium, sodium selenite, and sodium selenate, factor 2 (C) was the selenium concentration at 0, 5, 10, 15, and 30 mg/L. Data on germination, growth, phytochemicals, and selenium accumulation in kangkong seedlings were recorded. The results of the experiment found that application of sodium selenite at a concentration of 10 mg/L resulted in an increase in germination index, dry weight, and pigment content higher than the control. Meanwhile, a sodium selenate concentration of 15-30 mg/L had a negative effect on germination index and growth. But there was also an increase in antioxidant capacity, phenolic compounds, and selenium accumulation compared to the control.

References

กระทรวงสาธารณสุข. 2541. สารอาหารที่แนะนำให้บริโภคประจำวันสำหรับคนไทยอายุตั้งแต่ 6ปี ขึ้นไป. บัญชีหมายเลข 3 แนบท้ายประกาศกระทรวงสาธารณสุข (ฉบับที่182). (ระบบออนไลน์). แหล่งข้อมูล: https://food.fda.moph.go.th/media.php?id=510483619052134400&name=Compi_182.pdf (3 เมษายน 2567).

กุสุมา อินทร์เขียว อินทิรา ขูดแก้ว และพรไพรินทร์ รุ่งเจริญทอง. 2563. ผลของซีลีไนต์และซีลีเนตต่อการเจริญเติบโต ปริมาณรงควัตถุและสารพฤกษเคมีของกวางตุ้งฮ่องเต้ในระบบไฮโดรโปนิกส์. วารสารแก่นเกษตร 48 (ฉบับพิเศษ1):37-42.

ภัทรวรรณ รัตนสิริลักษณ์ อินทิรา ขูดแก้ว พิมพ์ชนก สตภูมินทร์ และพรไพรินทร์ รุ่งเจริญทอง. 2565. โซเดียมซีลีเนตต่อการเจริญเติบโตและสารพฤกษเคมีบางชนิดของต้นกล้าถั่วเขียว. วารสารแก่นเกษตร 50 (ฉบับพิเศษ 1):116-123

สมาคมการค้าเมล็ดพันธุ์ไทย. 2566. สถิติปริมาณและมูลค่าเมล็ดพันธุ์ควบคุมปี 2566. (ระบบออนไลน์). แหล่งข้อมูลhttps://www.doa.go.th (4 มิถุนายน 2567).

Akbaraly T.N., I. Hininger-Favier, I. Carrière, J. Arnaud, V. Gourlet, A.M. Roussel, and C. Berr. 2007. Plasma selenium over time and cognitive decline in the elderly. Epidemiology 18(1):52-8.

Arnon, D. I. 1949. Copper enzyme in isolated chloroplast. Polyphenoloxidase in Beta vulgari. Plant Physiology 24(1): 15.

Barnes, J. D., L. Balaguer, E. Manrique, S. Elvira, and A. W. Davison. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environmental and Experimental Botany 32:85-100.

Brand-Williams, W., M.E. Cuvelier, and C.L.W.T. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology 28(1):25-30.

Chauhan, R., S. Awasthi, P. Tripathi, S. Mishra, S.K. Dwivedi, A. Niranjan, S. Mallick, P. Tripathi, V. Pande, and R.D. Tripathi. 2017. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety 138:47-55.

Deng, X., K. Liu, M. Li, W. Zhang, X. Zhao, Z. Zhao, and X. Liu. 2017. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crops Research 211:165-171.

Deng, X., Z. Zhao, Z. Han, L. Huang, C. Lv, Z. Zhang, H. Zhang, and X. Liu. 2019. Selenium uptake and fruit quality of pear (Pyrus communis L.) treated with foliar Se application. Journal of Plant Nutrition and Soil Science 182(4):637-646.

El Mehdawi, A.F., C.F. Quinn, and E.A.H Pilon-Smits. 2011. Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy? New Phytologist 191:120-131.

Hadrup, N., and G. Ravn-Haren. 2021. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. Journal of Trace Elements in Medicine and Biology 67: 126801. DOI:10.1016/j.jtemb.2021.126801

Hegedűsová, A., S. Jakabová, O. Hegedűs, M. Valšíková, and A. Uher. 2012. Testing of Se inhibition effect on selected characteristics of garden pea. European Chemical Bulletin 1(12): 520-523.

Huang, S., K. Yu, Q. Xiao, B. Song, W. Yuan, X. Long, D. Cai, X. Xiong, and W. Zheng. 2023. Effect of bio-nano-selenium on yield, nutritional quality and selenium content of radish. Journal of Food Composition and Analysis 115: 104927. https://doi.org/10.1016/j.jfca.2022.104927

International Rules for Seed Testing (ISTA) 2016. International Rules for Seed Testing, Basserdorf, Switzerland Katamto, L., and J. Al-Zehouri. 2012. Validation of two spectrophotometric methods for the determination of selenium in food supplements with applied microwave digestion method a comparative evaluation of performance characteristics. International Journal of Pharmaceutical Sciences Review and Research 14(2): 30‐34.

Khaliq, A., F. Aslam, A. Matloob, S. Hussain, M. Geng, A. Wahid, and H. Rehman. 2015. Seed priming with selenium: consequences for emergence, seedling growth, and biochemical attributes of Rice. Biological Trace Element Research 166(2):236-44.

Lanza, M., and A. R. D. Reis. 2021. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry 164:27-43.

Lapaz, A.M., L.F.M. Santos, C.H.P. Yoshida, R. Heinrichs, M. Campos, and A.R. Reis. 2019. Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia 78(4):498-508.

Lei, B., Z. Bian, Q. Yang, J. Wang, R. Cheng, K. Li, W. Lui, Y. Zhang, H. Fang, and Y. Tong. 2018. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.). Journal of Integrative Agriculture 17(4):837–846.

León-Morales, J.M., W. Panamá-Raymundo, E.C. Langarica-Velázquez, and S. García-Morale. 2019. Selenium and vanadium on seed germination and seedling growth in pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). Revista Bio Ciencias 6:2007-3380.

Li, P., A. Song, Z. Li, F. Fan, and Y. Liang. 2012. Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reactions in rice (Oryza sativa L.). Plant Soil 354: 407-419.

Li, Y., Y. Xiao, J. Hao, S. Fan, R. Dong, H. Zeng, C. Liu, and Y. Han. 2022. Effects of selenate and selenite on selenium accumulation and speciation in lettuce. Plant Physiology and Biochemistry 192:162-171.

Maneetong, S., S. Chookhampaeng, A. Chantiratikul, O. Chinrasri, W. Thosaikham, R. Sittipout, and P. Chantiratikul. 2013. Hydroponic cultivation of selenium-enriched kale (Brassica oleracea var. alboglabra L.) seedling and speciation of selenium with HPLC–ICP-MS. Microchemical Journal 108: 87–91.

Prins, C.N., L.J. Hantzis, C.F. Quinn, and E.A.H. Pilon-Smits. 2011. Effects of selenium accumulation on reproductive functions in Brassica juncea and Stanleya pinnata. Journal of Experimental Botany 62:5633-5640.

Rayman, M.P. 2012. Selenium and human health. The Lancet 379, 1256-1268.

Ríos, J.J., M.A. Rosales, B. Blasco, L.M. Cervilla, L. Romero, and J.M. Ruiz. 2008. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae 116(3):248-255.

Silva, V.M., E.H.M. Boleta, M.G.D.B. Lanza, J. Lavres, J.T. Martins, E.F. Santos, and A.R.d. Reis. 2018. Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environmental and Experimental Botany 150:172-182.

Singhatas, P., A. Sangcakul, P. Sumritpradit, T. Thampongsa, C. Krutsri, and P. Lertsithichai. 2017. Prospective cohort study of serum selenium in surgical ICU patients. Journal of the Medical Association of Thailand 100:59-65.

Singleton, V.L., R. Orthofer, and R.M. Lamuela-Raventós. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology 299:152-178.

Szarka, V., Z. Jokai, H. El-Ramady, N. Abdalla, L. Kaszás and E. Domokos-Szabolcsy. 2020. Biofortification of Stevia rebaudiana (Bert.) plant with selenium. Environment, Biodiversity and Soil Security 4:19-31.

Tian, M., X. Xu, Y. Liu, L. Xie, and S. Pan. 2016. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars. Food Chemistry 190: 374-380.

Xie, X., Z. He, N. Chen, Z. Tang, Q. Wang, and Y. Cai. 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International 4:1-11. https://doi.org/10.1155/2019/9732325

Zhang, M., S. Tang, X. Huang, F. Zhang, Y. Pang, Q. Huang, and Q. Yi. 2014. Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany 107: 39-45.

Downloads

Published

2025-10-06

Issue

Section

Research article Academic article and Review article