Effects of Timings in Rice Husk Charcoal Application on Soil Inorganic Nitrogen and Rice Growth

Authors

  • Janista Duangpukdee Plant Science Section, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University
  • Pranee Sriraj Department of Thai Traditional Medicine, Faculty of Natural Resources, Rajamangala University of Technology Isan
  • Somchai Butnan Plant Science Section, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University

Keywords:

Biochar, Mineral nitrogen, Nitrification, Nitrogen transformation, Paddy soil

Abstract

The investigation of the proper timing of applying rice husk charcoal (RHC) to improve soil inorganic nitrogen (N) and rice growth is still limited. This paper, therefore, aimed to examine the effects of various timings of RHC (involving unamended and different timings of RHC application as in inversely chronological order varied from the late to early applications as 0, 15, 30, and 60 days before rice transplanting) on soil NH4+–N and NO3-–N concentrations and rice growth in a loamy paddy soil of Northeast Thailand. On the rice transplanting date, the earlier application of RHC brought about lower NH4+–N but higher NO3-–N concentrations than the later counterparts, indicating that the earlier charcoal application rendered a more extended transformation of NH4+ to NO3-. Because rice preferred NH4+ over NO3-, this effect led to less rice growth in the earlier than later applications of RHC before the rice transplanting. Therefore, the application of RHC into a loamy paddy soil on the date of rice transplanting was recommended to manipulate proper concentrations of soil inorganic N for maximizing rice growth

References

American Standard of Testing Material. 2015. Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis. American Standard of Testing Material International, West Conshohocken, PA.

Asadi, H., M. Ghorbani, M. Rezaei-Rashti, S. Abrishamkesh, E. Amirahmadi, C. Chengrong and M. Gorji. 2021. Application of rice husk biochar for achieving sustainable agriculture and environment. Rice Science 28(4): 325-343. doi:https://doi.org/10.1016/j.rsci.2021.05.004

Bremner, J. M. and C. S. Mulvaney. 1982. Nitrogen — Total. pp. 595-624. In Spark, D. L. (Ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Propterties. SSSA Book Ser. 5. SSSA. Madison, WI.

Butnan, S., J. L. Deenik, B. Toomsan, M. J. Antal and P. Vityakon. 2015. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237-238: 105-116. doi:https://doi.org/10.1016/j.geoderma.2014.08.010

Butnan, S., J. L. Deenik, B. Toomsan, M. J. Antal and P. Vityakon. 2016. Biochar properties influencing greenhouse gas emissions in tropical soils differing in texture and mineralogy. Journal of Environmental Quality 45: 1509–1519. doi: https://doi.org/10.2134/jeq2015.10.0532

Deenik, J. L., A. Diarra, G. Uehara, S. Campbell, Y. Sumiyoshi and M. J. Antal. 2011. Charcoal ash and volatile matter effects on soil properties and plant growth in an acid Ultisol. Soil Science 176(7): 336-345. doi:https://doi.org/10.1097/SS.0b013e31821fbfea

Deenik, J. L., T. McClellan, G. Uehara, M. J. Antal and S. Campbell. 2010. Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal 74: 1259-1270. doi:https://doi.org/10.2136/sssaj2009.0115

Fageria, N. K. 2014. Mineral Nutrition of Rice. CRC Press, Boca Raton.

Fageria, N. K., V. C. Baligar and C. A. Jones. 2011. Growth and Mineral Nutrition of Field Crops. CRC Press, Boca Raton.

Fried, M., F. Zsoldos, P. B. Vose and I. L. Shatokhin. 1965. Characterizing the NO3 and NH4 Uptake Process of Rice Roots by Use of 15N Labelled NH4NO3. Physiologia Plantarum 18(2): 313-320. doi:https://doi.org/10.1111/j.1399-3054.1965.tb06894.x

Kizito, S., S. Wu, W. Kipkemoi Kirui, M. Lei, Q. Lu, H. Bah and R. Dong. 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment 505: 102-112. doi:https://doi.org/10.1016/j.scitotenv.2014.09.096

Kroetsch, D. and C. Wang. 2008. Particle Size Distribution. pp. 713 – 725. In Carter, M. R. and Gregorich, E. G. (Eds.). Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, CRC Press, and Taylor & Francis Group. Oxford.

Latawiec, A. E., J. B. Królczyk, M. Kuboń, K. Szwedziak, A. Drosik, E. Polańczyk, K. Grotkiewicz and B. B. N. Strassburg. 2017. Willingness to adopt biochar in agriculture: The producer’s perspective. Sustainability 9(655): https://doi.org/10.3390/su9040655.

Ly, P., Q. Duong Vu, L. S. Jensen, A. Pandey and A. de Neergaard. 2015. Effects of rice straw, biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: a pot experiment. Paddy and Water Environment 13(4): 465-475. doi:https://doi.org/10.1007/s10333-014-0464-9

Mengel, K. and E. A. Kirkby. 2001. Principles of Plant Nutrition. Kluwer Academic Publishers, Dordrecht.

Mohanty, S., A. K. Patra and P. K. Chhonkar. 2008. Neem (Azadirachta indica) seed kernel powder retards urease and nitrification activities in different soils at contrasting moisture and temperature regimes. Bioresource Technology 99(4): 894-899. doi:https://doi.org/10.1016/j.biortech.2007.01.006

Nelson, D. W. and L. E. Sommers. 1982. Total Carbon, Organic Carbon, and Organic Matter. pp. 539-579. In Spark, D. L. (Ed.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Propterties. SSSA Book Ser. 5. SSSA. Madison, WI.

Nwajiaku, I. M., J. S. Olanrewaju, K. Sato, T. Tokunari, S. Kitano and T. Masunaga. 2018. Change in nutrient composition of biochar from rice husk and sugarcane bagasse at varying pyrolytic temperatures. International Journal of Recycling of Organic Waste in Agriculture 7(4): 269-276. doi:https://doi.org/10.1016/10.1007/s40093-018-0213-y

Prommer, J., W. Wanek, F. Hofhansl, D. Trojan, P. Offre, T. Urich, C. Schleper, S. Sassmann, B. Kitzler, G. Soja and R. C. Hood-Nowotny. 2014. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLOS ONE 9(1): e86388. doi:https://doi.org/10.1371/journal.pone.0086388

SAS Institute Inc. 2004. SAS/STAT® 9.1: User’s Guide. Cary, NC, SAS Institute Inc.

Si, L., Y. Xie, Q. Ma and L. Wu. 2018. The short-term effects of rice straw biochar, nitrogen and phosphorus fertilizer on rice yield and soil properties in a cold waterlogged paddy field. Sustainability 10(2): 537. doi:https://doi.org/10.3390/su10020537

Singh, B., M. M. Dolk, Q. Shen and M. Camps-Arbestain. 2017. Biochar pH, Electrical Conductivity and Liming Potential. pp. 23-38. In Singh, B., Camps-Arbestain, M. and Lehmann, J. (Eds.). Biochar: A Guide to Analytical Methods. CSIRO Publishing. Clayton South, Victoria.

Sun, H., H. Zhang, D. Powlson, J. Min and W. Shi. 2015. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research 173: 1-7. doi:https://doi.org/10.1016/j.fcr.2014.12.012

Thambhitaks, K. and J. Kitchaicharoen. 2021. Valuation of external costs of wet-season lowland rice production systems in Northern Thailand. Chiang Mai University Journal of Natural Sciences 20(3): e2021057. doi:https://doi.org/10.12982/CMUJNS.2021.057

Thomas, G. W. 1996. Soil pH and Soil Acidity. pp. 517–550. In Sparks, D. L. (Ed.). Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Book Series No.5. Soil Science Society of America. Wisconsin.

Vityakon, P. 2007. Degradation and restoration of sandy soils under different agricultural land uses in Northeast Thailand: A review. Land Degradation and Developement 18(5): 567–577. doi:https://doi.org/10.1002/ldr.798

Downloads

Published

2022-12-14

Issue

Section

Research article Academic article and Review article