DNA Markers Associated with Seed Dormancy in Zombi Pea [Vigna vexillata (L.) A. Rich]

Authors

  • Phitchamanu Chaisaen Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus
  • Kitiya Amkul Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus
  • Kularb Laosatit Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus
  • Prakit Somta Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus

Keywords:

Zombi pea, Vigna vexillata, seed dormancy, bulked segregant analysis, QTL

Abstract

A decrease in or a loss of seed dormancy is a key trait in domestication of cereal and legume crops. It provides the uniform germination of seeds which is relevant for crop production. Although seed dormancy is disadvantage for crop cultivation, it can be exploited for improving resistance to pre-harvest spouting causing by excessive rain and humidity. Zombi pea (Vigna vexillata (L.) A. Rich) is an underutilized legume crop that adapts well to several climatic and environmental conditions. This research aimed to identify DNA marker(s) associated with seed dormancy in zombi pea. An F2 population of 94 plants developed from a cross between "TVNu 240" (cultivated) and "TVNu 1623" (wild) was used to identify DNA markers associated with seed dormancy. Broad-sense heritability estimated for seed dormancy in the population was 62.99 %. Bulk segregant analysis showed that simple sequence repeat (SSR) markers VvSSR-39, VvSSR-48 and VvSSR-71 were associated with seed dormancy. Single regression analysis explained 15.15 %, 13.06 % and 11.49%, of seed dormancy variation in the F2 population, respectively. QTL mapping identified a single QTL for the seed dormancy between the markers VvSSR-39 and VvSSR-71. The QTL explained 18.29 % of the trait variation. The results provide the basis for gene cloning of the seed dormancy in zombi pea

References

Amkul, K., L. Wang, P. Somta, S. Wang and X. Cheng. 2019. Construction of a high density linkage map and genome dissection of bruchid resistance in zombi pea (Vigna vexillata (L.) A. Rich). Scientific Reports 9: 1-10.

Amkul, K., P. Somta, K. Laosatit and L. Wang. 2020. Identification of QTLs for domestication-related traits in zombi pea [Vigna vexillata (L.) A. Rich.], a lost crop of Africa. Frontiers in Genetics 11: 803.

Birch, A.N.E., L.E. Fellow, S.V. Evans and K. Doherty .1986. Para-Aminophenylalanine in Vigna: possible taxonomic and ecological significance as a seed defence against bruchids. Phytochemistry 25: 2745-2749.

Chandel, K.P.S., R.K. Arora and B.S. Joshi. 1972. Vigna capensis Walp. (V. vexillata) an edible root legume. Current Science 41: 537.

Chai, M., C. Zhou, I. Molina, C. Fu, J. Nakashima, G. Li, W. Zhang, J. Park, Y. Tang, Q. Jiang and Z.Y. Wang. 2016. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proceedings of the National Academy of Sciences of the United States of America 113: 6997-7002.

Dachapak, S., P. Somta, S. Poonchaivilaisak, T. Yimram and P. Srinives. 2017. Genetic diversity and structure of the zombi pea (Vigna vexillata (L.) A. Rich.) gene pool based on SSR marker analysis. Genetica 145: 189-200.

Finch-Savage, W.E. and G. Leubner-Metzger. 2006 Seed dormancy and the control of germination. New Phytologist 171: 501-23.

Gomathinayagam, P., S. Ganeshram, R. Rathnaswamy and N.M. Ramaswamy. 1998. Interspecific hybridization between Vigna unguiculata (L.) Walp. and Vigna vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 102: 203-209.

Jackai, L.E.N. and S. Oghiakhe. 1989. Pod wall trichomes and resistance of two wild cowpea, Vigna vexillata, accessions to Maruca testualis (Geyer) (Lepidoptera: Pyralidae) and Clavigralla tomentosicollis Stal (Hemiptera: Coreidae). Bulletin of Entomological Research 79: 595-605

Karuniawan, A., A. Iswandi, P.R. Kale, J. Heinzemann and W.J. Grüneberg. 2005. Vigna vexillata (L.) A. Rich. cultivated as a root crop in Bali and Timor. Genetic Resources and Crop Evolution 53: 213-217.

Kosambi, D. 1944. The estimation of map distance from recombination values. Annals of Eugenics 12: 172-175.

Laosatit, K., K. Amkul, T.Yimram, J. Chen, Y. Lin, X. Yuan, L. Wang, X. Chen and P. Somta. 2022. A Class II KNOX gene, KNAT7-1, regulates physical seed dormancy in mungbean [Vigna radiata (L.) Wilczek]. Frontiers in Plant Science 13: 1-14.

Lee, J.S., D. Chebotarov, K.L. McNally, V. Pede, T.D. Setiyono, R. Raquid, W.J. Hyun, J.U. Jeung, A. Kohli and Y. Mo. 2021. Novel sources of pre-harvest sprouting resistance for Japonica rice improvement. Plants 10: 1709.

Li, H., G. Ye and J. Wang. 2007. A modified algorithm for the improvement of composite interval mapping. Genetics 175: 361-374.

Lodhi, M.A., G.N. Ye, N.F. Weeden and B.I. Reisch. 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Molecular Biology 12: 6-13.

Meng, L., H. Li, L. Zhang and J. Wang. 2015. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop Journal 3: 269-283.

Michelmore, R.W., I. Paran and R.V. Kesseli. 1991. Identification of markers linked to disease resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proceedings of the National Academy of Sciences of the United States of America 88: 9828-9832.

Nonogaki, H. 2014. Seed dormancy and germination emerging mechanisms and new hypotheses. Frontiers in Plant Science 5: 233.

Panzeri, D., W.G. Nissim, M. Labra and F. Grassi. 2022. Revisiting the domestication process of African Vigna species (Fabaceae): background, perspectives and challenges. Plants 11: 532.

Wang, M., W. Li, C. Fang, F. Xu, Y. Liu, Z. Wang, R. Yang, M. Zhang, S. Liu, S. Lu, T. Lin, J. Tang, Y. Wang, H. Wang, H. Lin, B. Zhu, M. Chen, F. Kong, B. Liu, D. Zeng, S.A. Jackson, C. Chu and Z. Tian. 2018. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics 50: 1435-1441.

Downloads

Published

2024-03-03

Issue

Section

Research article Academic article and Review article